代码随想录算法训练营day39|62.不同路径 |63.不同路径 II

62.不同路径

力扣题目链接

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

代码随想录算法训练营day39|62.不同路径 |63.不同路径 II_第1张图片

  • 输入:m = 3, n = 7
  • 输出:28

示例 2:

  • 输入:m = 2, n = 3
  • 输出:3

解释: 从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下
  2. 向右 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向右

示例 3:

  • 输入:m = 7, n = 3
  • 输出:28

示例 4:

  • 输入:m = 3, n = 3
  • 输出:6

提示:

  • 1 <= m, n <= 100

  • 题目数据保证答案小于等于 2 * 10^9

  • 动态规划

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

1.确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2.确定递推公式

想要求dp [i][j],只能有两个方向来推导出来,即dp[i - 1][j] dp[i][j - 1]

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

3.dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

所以初始化代码为:

for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;

4.确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j]+ dp[i][j - 1]dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] dp[i][j - 1]一定是有数值的。

5.举例推导dp数组

如图所示:

代码随想录算法训练营day39|62.不同路径 |63.不同路径 II_第2张图片

以上动规五部曲分析完毕,代码如下:

  /**
     * 1. 确定dp数组下标含义 dp[i][j] 到每一个坐标可能的路径种类
     * 2. 递推公式 dp[i][j] = dp[i-1][j] dp[i][j-1]
     * 3. 初始化 dp[i][0]=1 dp[0][i]=1 初始化横竖就可
     * 4. 遍历顺序 一行一行遍历
     * 5. 推导结果 。。。。。。。。
     *
     * @param m
     * @param n
     * @return
     */
    public static int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        //初始化
        for (int i = 0; i < m; i++) {
            dp[i][0] = 1;
        }
        for (int i = 0; i < n; i++) {
            dp[0][i] = 1;
        }

        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
  • 时间复杂度:O(m × n)
  • 空间复杂度:O(m × n)

其实用一个一维数组(也可以理解是滚动数组)就可以了,但是不利于理解,可以优化点空间,建议先理解了二维,在理解一维,C++代码如下:

class Solution {
 public static int uniquePaths(int m, int n) {
        int[][] dp = new int[m][n];
        for (int i = 0; i < n; i++) dp[i] = 1;
        for (int j = 1; j < m; j++) {
            for (int i = 1; i < n; i++) {
                dp[i] += dp[i - 1];
            }
        }
        return dp[n - 1];
    }
};
  • 时间复杂度:O(m × n)
  • 空间复杂度:O(n)

63.不同路径 II

力扣题目链接

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

代码随想录算法训练营day39|62.不同路径 |63.不同路径 II_第3张图片

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

代码随想录算法训练营day39|62.不同路径 |63.不同路径 II_第4张图片

  • 输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
  • 输出:2 解释:
  • 3x3 网格的正中间有一个障碍物。
  • 从左上角到右下角一共有 2 条不同的路径:
    1. 向右 -> 向右 -> 向下 -> 向下
    2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

代码随想录算法训练营day39|62.不同路径 |63.不同路径 II_第5张图片

  • 输入:obstacleGrid = [[0,1],[0,0]]
  • 输出:1

提示:

  • m == obstacleGrid.length

  • n == obstacleGrid[i].length

  • 1 <= m, n <= 100

  • obstacleGrid[i][j] 为 0 或 1

  • 动规五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2.确定递推公式

递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]

但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。

所以代码为:

if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]
    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}

3.dp数组如何初始化

在62.不同路径中我们给出如下的初始化:

        int[][] dp=new int[m][n];
        for(int i=0;i<m;i++) dp[i][0]=1;
        for(int j=0;j<n;j++) dp[0][j]=1;

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

如图:

代码随想录算法训练营day39|62.不同路径 |63.不同路径 II_第6张图片

下标(0, j)的初始化情况同理。

所以本题初始化代码为:

for(int i=0;i<m && obstacleGrid[i][0]==0;i++) dp[i][0]=1;
for(int j=0;j<n && obstacleGrid[0][j]==0;j++) dp[0][j]=1;

注意代码里for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

4.确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] dp[i][j - 1]一定是有数值。

代码如下:

for(int i=1;i<m;i++){
   for(int j=1;j<n;j++){
      if(obstacleGrid[i][j]==0){
          dp[i][j]=dp[i-1][j]+dp[i][j-1];
      }               
   }
} 

5.举例推导dp数组

拿示例1来举例如题:

代码随想录算法训练营day39|62.不同路径 |63.不同路径 II_第7张图片

对应的dp table 如图:

代码随想录算法训练营day39|62.不同路径 |63.不同路径 II_第8张图片

如果这个图看不懂,建议再理解一下递归公式,然后照着文章中说的遍历顺序,自己推导一下!

动规五部分分析完毕,对应代码如下:

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m=obstacleGrid.length;
        int n=obstacleGrid[0].length;
        int[][] dp=new int[m][n];
        if(obstacleGrid[m-1][n-1]==1 || obstacleGrid[0][0]==1) return 0;
        for(int i=0;i<m && obstacleGrid[i][0]==0;i++) dp[i][0]=1;
        for(int j=0;j<n && obstacleGrid[0][j]==0;j++) dp[0][j]=1;
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(obstacleGrid[i][j]==0){
                    dp[i][j]=dp[i-1][j]+dp[i][j-1];
                }               
            }
        } 
        return dp[m-1][n-1];
    }
}
  • 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
  • 空间复杂度:O(n × m)

同样我们给出空间优化版本:

// 空间优化版本
class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
        int[] dp = new int[n];
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[j] = 1;
        }
        for (int i = 1; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (obstacleGrid[i][j] == 1) {
                    dp[j] = 0;
                } else if (j != 0) {
                    dp[j] += dp[j - 1];
                }
            }
        }
        return dp[n - 1];
    }
}
  • 时间复杂度:O(n × m),n、m 分别为obstacleGrid 长度和宽度
  • 空间复杂度:O(m)

你可能感兴趣的:(算法,动态规划,java,leetcode)