八大排序算法时间空间复杂度分析

作者:番茄焖鸡蛋
链接:https://www.nowcoder.com/discuss/200097?type=1
来源:牛客网

1、冒泡排序不管序列是怎样,都是要比较n(n-1)/2 次的,最好、最坏、平均时间复杂度都为O(n²),需要一个临时变量用来交换数组内数据位置,所以空间复杂度为O(1)。有很多人说冒泡排序的最优的时间复杂度为O(n),其实这是在代码中使用一个标志位来判断是否已经排序好的,是冒泡排序的优化版,如果元素已经排序好,那么循环一次就直接退出。


2、选择排序是冒泡排序的改进,同样选择排序无论序列是怎样的都是要比较n(n-1)/2次的,最好、最坏、平均时间复杂度也都为O(n²),需要一个临时变量用来交换数组内数据位置,所以空间复杂度为O(1)。


3、插入排序不同,如果序列是完全有序的,插入排序只要比较n次,无需移动时间复杂度为O(n),如果序列是逆序的,插入排序要比较O(n²)和移动O(n²) ,所以平均复杂度为O(n²),最好为O(n),最坏为O(n²),排序过程中只要一个辅助空间,所以空间复杂度O(1)。


4、快速排序的时间复杂度最好是O(nlog2n),平均也是O(nlog2n),最坏情况是序列本来就是有序的,此时时间复杂度为O(n²),快速排序的空间复杂度可以理解为递归的深度,而递归的实现依靠栈,平均需要递归logn次,所以平均空间复杂度为O(log2n)。


5、归并排序需要一个临时temp[]来储存归并的结果,空间复杂度为O(n),时间复杂度为O(nlog2n),可以将空间复杂度由 O(n) 降低至 O(1),然而相对的时间复杂度则由 O(nlogn) 升至 O(n²)。


6、希尔排序的时间复杂度分析及其复杂,有的增量序列的复杂度至今还没人能够证明出来,只需要记住结论就行,{1,2,4,8,...}这种序列并不是很好的增量序列,使用这个增量序列的时间复杂度(最坏情形)是O(n²),Hibbard提出了另一个增量序列{1,3,7,...,2^k-1},这种序列的时间复杂度(最坏情形)为O(n^1.5),Sedgewick提出了几种增量序列,其最坏情形运行时间为O(n^1.3),其中最好的一个序列是{1,5,19,41,109,...},需要一个临时变量用来交换数组内数据位置,所以空间复杂度为O(1)。


7、堆排序的时间复杂度,主要在初始化堆过程和每次选取最大数后重新建堆的过程,初始化建堆时的时间复杂度为O(n),更改堆元素后重建堆的时间复杂度为O(nlog2n),所以堆排序的平均、最好、最坏时间复杂度都为O(nlog2n),堆排序是就地排序,空间复杂度为常数O(1)。


8、基数排序对于 n 个记录,执行一次分配和收集的时间为O(n+r),如果关键字有 d 位,则要执行 d 遍,所以总的时间复杂度为 O(d(n+r))。该算法的空间复杂度就是在分配元素时,使用的桶空间,空间复杂度为O(r+n)=O(n)


以上是我自己的总结,每个算法都附有链接,下图是我自己整理的表格,喜欢的话别忘了点个赞哦

八大排序算法时间空间复杂度分析_第1张图片


排序算法适用场景

  • 若n较小(如n≤50),可采用直接插入或直接选择排序。当记录规模较小时,直接插入排序较好,否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。
  • 若序列初始状态基本有序,则直接插入和冒泡最佳,随机的快速排序也不错。插入排序对部分有序的数组很有效,所需的比较次数平均只有选择排序的一半。
  • 若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。
    • 快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;
    • 堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。但这两种排序都是不稳定的。
    • 若要求排序稳定,则可选用归并排序。两两归并的排序算法并不值得提倡,通常可以将它和直接插入排序结合在一起使用。先利用直接插入排序求得较长的有序子文件,然后再两两归并之。因为直接插入排序是稳定的,所以改进后的归并排序仍是稳定的。
  • 希尔排序比插入排序和选择排序要快得多,并且数组越大,优势越大。如果需要解决一个排序问题而又没有系统排序函数可用(例如直接接触硬件或者运行于嵌入式系统中的代码),可以先用希尔排序,再考虑是否替换为更复杂的排序算法。而对于部分有序和小规模的数组,应使用插入排序。
  • 归并排序可以处理数百万甚至更大规模的数组,但是插入排序和选择排序做不到。归并排序的主要缺点是辅助数组所使用的额外空间和n的大小成正比。
  • 快速排序的优点是原地排序(只需要一个很小的辅助栈),但是基准的选取是个问题,对于小数组,快速排序要比插入排序慢。
  • 堆排序的优点是在排序时可以将需要排序的数组本身作为堆,无需任何额外空间,与选择排序有些类似,但所需的比较要少得多,堆排序适合例如嵌入式系统或低成本移动设备中容量有限的场景。

你可能感兴趣的:(C/C++基础)