static ThreadPoolExecutor executor = (ThreadPoolExecutor) Executors.newFixedThreadPool(3);
static CountDownLatch countDownLatch = new CountDownLatch(3);
public static void main(String[] args) throws InterruptedException {
System.out.println("主业务开始执行");
sleep(1000);
executor.execute(CompanyTest::a);
executor.execute(CompanyTest::b);
executor.execute(CompanyTest::c);
System.out.println("三个任务并行执行,主业务线程等待");
// 死等任务结束
// countDownLatch.await();
// 如果在规定时间内,任务没有结束,返回false
if (countDownLatch.await(10, TimeUnit.SECONDS)) {
System.out.println("三个任务处理完毕,主业务线程继续执行");
}else{
System.out.println("三个任务没有全部处理完毕,执行其他的操作");
}
}
private static void a() {
System.out.println("A任务开始");
sleep(1000);
System.out.println("A任务结束");
countDownLatch.countDown();
}
private static void b() {
System.out.println("B任务开始");
sleep(1500);
System.out.println("B任务结束");
countDownLatch.countDown();
}
private static void c() {
System.out.println("C任务开始");
sleep(2000);
System.out.println("C任务结束");
countDownLatch.countDown();
}
private static void sleep(long timeout){
try {
Thread.sleep(timeout);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
// CountDownLatch的有参构造
public CountDownLatch(int count) {
// 健壮性校验
if (count < 0) throw new IllegalArgumentException("count < 0");
// 构建内部类,Sync传入count
this.sync = new Sync(count);
}
// AQS子类,Sync的有参构造
Sync(int count) {
// 就是给AQS中的state赋值
setState(count);
}
// 一般主线程await的方法,阻塞主线程,等待state为0
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
// 执行了AQS的acquireSharedInterruptibly方法
public final void acquireSharedInterruptibly(int arg) throws InterruptedException {
// 判断线程是否中断,如果中断标记位是true,直接抛出异常
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
// 共享锁挂起的操作
doAcquireSharedInterruptibly(arg);
}
// tryAcquireShared在CountDownLatch中的实现
protected int tryAcquireShared(int acquires) {
// 查看state是否为0,如果为0,返回1,不为0,返回-1
return (getState() == 0) ? 1 : -1;
}
private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
// 封装当前先成为Node,属性为共享锁
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
// 在这,就需要挂起当前线程。
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
// countDown对计数器-1
public void countDown() {
sync.releaseShared(1); // 是-1
}
// AQS提供的功能
public final boolean releaseShared(int arg) {
// 对state - 1
if (tryReleaseShared(arg)) {
// state - 1后,变为0,执行doReleaseShared
doReleaseShared();
return true;
}
return false;
}
// CountDownLatch的tryReleaseShared实现
protected boolean tryReleaseShared(int releases) {
// 死循环是为了避免CAS并发问题
for (;;) {
int c = getState(); // 获取state
if (c == 0) // state已经为0,直接返回false
return false;
int nextc = c-1; // 对获取到的state - 1
// 基于CAS的方式,将值赋值给state
if (compareAndSetState(c, nextc))
// 赋值完,发现state为0了。此时可能会有线程在await方法处挂起,那边挂起,需要这边唤醒
return nextc == 0;
}
}
// 如何唤醒在await方法处挂起的线程
private void doReleaseShared() {
for (;;) { // 死循环
Node h = head; // 拿到head
// head不为null,有值,并且head != tail,代表至少2个节点
// 一个虚拟的head,加上一个实质性的Node
if (h != null && h != tail) {
int ws = h.waitStatus; // 说明AQS队列中有节点
if (ws == Node.SIGNAL) {// 如果head节点的状态为 -1
// 先对head节点将状态从-1,修改为0,避免重复唤醒的情况
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue;
// 正常唤醒节点即可,先看head.next,能唤醒就唤醒,如果head.next有问题,从后往前找有效节点
unparkSuccessor(h);
}
// 会在Semaphore中谈到这个位置
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue;
}
// 会在Semaphore中谈到这个位置
if (h == head)
break;
}
}
从名字上来看 CyclicBarrier,就是代表循环屏障。
CyclicBarrier 一般被称为栅栏,是一种同步机制,允许一组线程相互等待。线程达到屏障点其实是基于 await 方法在屏障点阻塞。
CyclicBarrier 并没有基于 AQS 实现,它是基于 ReentrantLock 锁机制实现了对屏障点的 --,以及线程挂起的操作。(CountDownLatch本身是基于 AQS,对 state 进行 release 操作后,可以 -1)
CyclicBarrier 每来一个线程执行 await 方法,都会对屏障数值 -1 操作,每次 -1 后,立即查看数值是否为 0。如果为 0,直接唤醒所有的相互等待的线程。
CyclicBarrier 和 CountDownLatch 区别?
举个:出国旅游
导游小姐姐需要等待所有乘客都到位后,发护照、签证等文件,再一起出发。
比如 Tom、Jack、Rose 三个人组团出门旅游
public static void main(String[] args) throws InterruptedException {
CyclicBarrier barrier = new CyclicBarrier(3,() -> {
System.out.println("等到各位大佬都到位之后,分发护照和签证等内容!");
});
new Thread(() -> {
System.out.println("Tom到位!!!");
try {
barrier.await();
} catch (Exception e) {
System.out.println("悲剧,人没到齐!");
return;
}
System.out.println("Tom出发!!!");
}).start();
Thread.sleep(100);
new Thread(() -> {
System.out.println("Jack到位!!!");
try {
barrier.await();
} catch (Exception e) {
System.out.println("悲剧,人没到齐!");
return;
}
System.out.println("Jack出发!!!");
}).start();
Thread.sleep(100);
new Thread(() -> {
System.out.println("Rose到位!!!");
try {
barrier.await();
} catch (Exception e) {
System.out.println("悲剧,人没到齐!");
return;
}
System.out.println("Rose出发!!!");
}).start();
/*
tom到位,jack到位,rose到位
导游发签证
tom出发,jack出发,rose出发
*/
}
public class CyclicBarrier {
// 这个静态内部类是用来标记是否中断的
private static class Generation {
boolean broken = false;
}
// CyclicBarrier是基于ReentrantLock实现的互斥操作,以及计数原子性操作
private final ReentrantLock lock = new ReentrantLock();
// 基于当前的Condition实现线程的挂起和唤醒
private final Condition trip = lock.newCondition();
// 记录有参构造出入的屏障数值,不会对这个数值做操作
private final int parties;
// 当屏障数值达到0之后,优先执行当前任务
private final Runnable barrierCommand;
// 初始化默认的Generation,用来标记线程中断情况
private Generation generation = new Generation()