- python 转dll_单行数据转fa
UXOFFER
python转dll
Kim读完需要4分钟速读仅需2分钟/单行数据转fa/虽然已经慢慢淡出生信领域,慢慢渗透到IT,看到洲更和阿秭发这种让人手痒的问题,就忍不住在写完一堆自己都想吐的逻辑实现后抓住这个小问题练习一下,避免手生,也算是给摸了这么长时间的鱼一点安慰吧。1可能是最简单的方式这是非常适合萌新上手的练习,如果你还没有linux也没关系,gitforwindows提供了常用的gnu工具包括sedawkgrep三剑客
- 记录阿里云CDN配置
wjp@001
#服务器笔记阿里云云计算
网站接入CDN全流程,共4步!-阿里云开发者社区1、开通阿里云CDN服务2、添加加速域名3、验证域名归属权4、域名添加CDN生成的CNAME解析按照官网描述增加。细节点:1.域名和泛域名区别2.开启https,要用nginx的证书,和项目证书没关系3.回源host设置,地址重写4.国内用户用国内服务,只有国外用cdn,加速配置解析请求来源设置境外,ip解析启用
- 攻克AWS认证机器学习工程师(AWS Certified Machine Learning Engineer) - 助理级别认证:我的成功路线图
硅基创想家
AI-人工智能与大模型aws机器学习云计算AWS认证
引言当我决定考取AWS认证机器学习工程师-助理(AWSCertifiedMachineLearningEngineer—Associate)级别证书时,我就预料到这将是一段充满挑战但回报颇丰的旅程。跟你说吧,它在这两方面都没让我失望。这项考试面向的是不仅理解机器学习原理,还对AWS生态系统有扎实基础认知的专业人士。如果你还未达到AWS认证解决方案架构师-助理级别的水平,那你得先夯实这些基础。一个不
- AI基础 -- AI学习路径图
sz66cm
人工智能学习
人工智能从数学到大语言模型构建教程第一部分:AI基础与数学准备1.绪论:人工智能的过去、现在与未来人工智能的定义与发展简史从符号主义到统计学习、再到深度学习与大模型的变迁本书内容概览与学习路径指引2.线性代数与矩阵运算向量与矩阵的基本概念矩阵分解(特征值分解、奇异值分解)张量运算简介(为后续深度学习做准备)在机器学习和深度学习中的应用示例3.概率论与统计基础随机变量、分布与期望方差贝叶斯理论与最大
- AGI方向研究
微醺欧耶
agi
要成为一名合格的AGI(通用人工智能)实习生,你需要具备跨学科的知识体系、扎实的技术能力以及前沿研究视野。以下是基于你当前基础的能力扩展方向、关键研究领域以及未来发展的详细分析:---###**一、AGI实习生需具备的核心能力**####1.**数学与理论基础**-**数学基础**:线性代数(矩阵运算、特征值)、概率统计(贝叶斯理论、分布模型)、微积分(梯度优化)、信息论(熵、KL散度)。-**计
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- JS---用js敲代码,到底加不加分号
程序员javascript
在js的江湖中,一直存在着互相对立的两个门派“分号党”和“不加分号党”,两派一直争论不下。其实,分号就像是个语法噪音,因为你就是不加分号,js语法也会用补全规则自动给你加上,所以加不加分号这事儿,真的是没有绝对的对和错,它就只是跟你人有关,而且是主观方面的,我觉得该加就加,不该加就不加。你想少敲几下键盘,省点儿可以忽略不记的存储空间,那就不写分号;你说不加分号的代码我看着就不爽,就读不下去,那你就
- 2021年超详细的-Android超神学习路线总结--纯干货分享(字节,阿里,腾讯大牛联合打造)(1)
2401_86963927
android学习
10、反射(掌握)学习Android开发,首先要学习java基础知识,尤其是校招的时候非常注重基础,即使没有项目也没关系,基础一定要打好,一般笔试以及面试的第一轮,对基础的考察是比较多的。如果是小白入门,看视频是最有助于理解的,而且是学习最快的,后面再查缺补漏的时候,就看看书就好了,或者回头翻一下笔记。如果已经学过java基础的知识,也可以直接翻一遍书,复习复习即可。看视频的时候不能只听不练,建议
- 机器学习算法 —— 朴素贝叶斯
ZShiJ
机器学习算法机器学习算法分类贝叶斯
欢迎来到我的博客——探索技术的无限可能!博客的简介(文章目录)目录朴素贝叶斯朴素贝叶斯的介绍朴素贝叶斯的优点朴素贝叶斯的缺点朴素贝叶斯的应用实战(贝叶斯分类)莺尾花数据库函数导入数据导入和分析模型训练模型预测原理简析模拟离散数据集朴素贝叶斯朴素贝叶斯的介绍朴素贝叶斯法=贝叶斯定理+特征条件独立。朴素贝叶斯(NaiveBayes)是基于贝叶斯定理的概率分类算法。该算法假设特征之间相互独立,即某个特征
- 【机器学习理论】朴素贝叶斯网络
SUNX-T
机器学习机器学习概率论人工智能
基础知识:先验概率:对某个事件发生的概率的估计。可以是基于历史数据的估计,可以由专家知识得出等等。一般是单独事件概率。后验概率:指某件事已经发生,计算事情发生是由某个因素引起的概率。一般是一个条件概率。条件概率:条件事件发生后,另一个事件发生的概率。一般的形式为P(B∣A)P(B|A)P(B∣A),表示AAA发生的条件下BBB发生的概率。P(B∣A)=P(AB)P(A)P(B|A)=\frac{P
- 机器学习day8
ኈ ቼ ዽ
机器学习numpypython
自定义数据集,使用朴素贝叶斯对其进行分类代码importnumpyasnpimportmatplotlib.pyplotaspltclass1_points=np.array([[2.1,2.2],[2.4,2.5],[2.2,2.0],[2.0,2.1],[2.3,2.3],[2.6,2.4],[2.5,2.1]])class2_points=np.array([[4.0,3.5],[4.2,3
- 自定义数据集 ,使用朴素贝叶斯对其进行分类
sirius12345123
分类numpypython
importnumpyasnpimportmatplotlib.pyplotaspltclass1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])class2_points=np.array([[3.2,3.2],[3.7,2.9],[3.2,2.6],[1.7,3.3
- format函数基本用法
「已注销」
1.format函数基本格式:.format()例如:print("{},我想跟你说:{}“.format(a,b))2.字符串format()方法。例如:print("{}{}".format("hello","world"))#不指定位置运行结果为helloworldprint("{1}{0}{1}".format("hello","world"))#设置指定位置运行结果为worldhello
- 自定义数据集 ,使用朴素贝叶斯对其进行分类
知识鱼丸
machinelearning机器学习
数据集定义:-data列表包含了文本样本及其对应的情感标签。每个元素是一个元组,第一个元素是文本,第二个元素是标签。特征提取:-使用CountVectorizer将文本转换为词频向量。fit_transform方法在训练数据上拟合向量器并进行转换。模型训练:-初始化MultinomialNB模型,这是适用于离散数据(如词频)的朴素贝叶斯分类器。-使用fit方法在提取的特征和标签上训练模型。预测:-
- 自定义数据集 ,使用朴素贝叶斯对其进行分类
〖是♂我〗
pythonnumpy开发语言
代码:#导入必要的库importnumpyasnpimportmatplotlib.pyplotasplt#定义类1的数据点,每个数据点是二维的坐标class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])#定义类2的数据点,每个数据点是二维的坐标class2_poi
- 自定义数据集 ,使用朴素贝叶斯对其进行分类
Z211613347
python
importnumpyasnpimportmatplotlib.pyplotasplt#1.散点输入class1_points=np.array([[1.9,1.2],[1.5,2.1],[1.9,0.5],[1.5,0.9],[0.9,1.2],[1.1,1.7],[1.4,1.1]])class2_points=np.array([[3.2,3.2],[3.7,2.9],[3.2,2.6],[
- 模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型实现男女分类
CV视界
模式识别机器学习与图像处理机器学习python人工智能
模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和pazen窗方法实现男女分类欢迎大家来到安静到无声的《模式识别与人工智能(程序与算法)》,如果对所写内容感兴趣请看模式识别与人工智能(程序与算法)系列讲解-总目录,同时这也可以作为大家学习的参考。欢迎订阅,优惠价只需9.9元,请多多支持!目录标题模式识别与机器学习(Python实现):基于sklearn朴素贝叶斯模型和paz
- 使用朴素贝叶斯对自定义数据集进行分类
Luzem0319
人工智能机器学习
准备自定义数据集首先,需要一个自定义数据集来进行分类。创建一个简单的二维数据集,其中每个样本有两个特征,并且属于两个类别之一。importnumpyasnpimportpandasaspd#创建自定义数据集np.random.seed(42)num_samples=100#生成特征数据X=np.random.rand(num_samples,2)#生成标签数据(0或1)y=np.where(X[:
- 使用支持向量机和朴素贝叶斯对文本分类
SSeaflower
支持向量机分类算法机器学习python
一、支持向量机文本分类1.1支持向量机分类器(SVC)支持向量机分类器(SupportVectorClassifier),缩写为SVC。SVC是sklearn.svm模块的一部分,提供了对支持向量机(SVM)算法的实现。SVM是一种监督学习模型,用于分类和回归任务。SVC是SVM用于分类的实现。1.2SVC的用法及参数通过以下方式创建SVC对象并进行训练:fromsklearn.svmimport
- 【Spring Cloud 10】阿里巴巴分布式服务架构流量控件Sentinel,B站黑马程序员学习笔记
2501_90252715
springcloud架构sentinel
貌似还是他更强一些,不过没关系,加油!所以,今天开启为期一个月的博客疯狂之旅。一、百度百科Sentinel是面向分布式服务架构的高可用流量防护组件,主要以流量为切入点,从限流、流量整形、熔断降级、系统负载保护、热点防护等多个维度来帮助开发者保障微服务的稳定性。Sentinel具有以下特性:丰富的应用场景:Sentinel承接了阿里巴巴近10年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系
- Scikit-learn提供了哪些机器学习算法以及如何使用Scikit-learn进行模型训练和评估
Java资深爱好者
机器学习scikit-learn算法
Scikit-learn库的使用一、Scikit-learn提供的机器学习算法Scikit-learn(通常简称为sklearn)是一个广泛使用的Python机器学习库,它提供了多种用于数据挖掘和数据分析的算法。Scikit-learn支持的机器学习算法可以大致分为以下几类:分类算法:支持向量机(SVM)随机森林(RandomForest)逻辑回归(LogisticRegression)朴素贝叶斯
- 数据挖掘常用算法
kaiyuanheshang
AI数据挖掘算法人工智能
文章目录基于机器学习~~线性/逻辑回归~~树模型~~贝叶斯~~~~聚类~~集成算法神经网络~~支持向量机~~~~降维算法~~基于机器学习线性/逻辑回归类似单层神经网络y=k*x+b树模型优点可以做可视化分析速度快结果稳定依赖前期对业务和数据的理解贝叶斯贝叶斯依赖先验概率,先验知识越准,结果越好聚类集成算法xgboostlightbgm神经网络在文本、视觉领域效果非常好。但是过程黑盒,缺乏解释性支持
- 揭秘大语言模型:什么是LLM大模型?
AGI-杠哥
程序人生兼职副业web安全语言模型人工智能自然语言处理
前言自从去年chatgpt横空出世以来,它火爆也让大语言模型这个词变的很流行,到底什么是大语言模型,今天从初学者的角度介绍一下大语言模型的基本概念、组成部分和基本工作流程等。下面的介绍中如果涉及到一些专业术语不太理解,也没关系,只要有一个感性认识即可,毕竟我们不打算造车,只要做到自己部署开源大模型的时候,不至于脸盲就可以了。一、大语言模型特点和基本组成大语言模型(LargeLanguageMode
- matlab的多线程操作
m0_74823044
面试学习路线阿里巴巴资料职业发展matlab单片机开发语言后端
matlab的多线程操作先导知识一、结论二、定时器timer三、多进程操作先导知识听说过:定时器中断、线程、进程知道:matlab的帮助文档使用方式,如:docmemmapfile、helpmemmapfile理解:回调函数,同步回调、异步回调(不知道也没关系,csdn里面很多人都写了这个)一、结论截止到2021a版本,matlab不能实现传统意义的多线程,但是可以实现并行计算(docparall
- 细说机器学习算法之ROC曲线用于模型评估
Melancholy 啊
机器学习算法人工智能数据挖掘python
系列文章目录第一章:Pyhton机器学习算法之KNN第二章:Pyhton机器学习算法之K—Means第三章:Pyhton机器学习算法之随机森林第四章:Pyhton机器学习算法之线性回归第五章:Pyhton机器学习算法之有监督学习与无监督学习第六章:Pyhton机器学习算法之朴素贝叶斯第七章:Pyhton机器学习算法之XGBoost第八章:Pyhton机器学习算法之GBDT第九章:Pyhton机器学
- 神经网络|(七)概率论基础知识-贝叶斯公式
西猫雷婶
概率论人工智能概率论
【1】引言前序我们已经了解了一些基础知识。古典概型:有限个元素参与抽样,每个元素被抽样的概率相等。条件概率:在某条件已经达成的前提下,新事件发生的概率。实际计算的时候,应注意区分,如果是计算综合概率,比如A已经发生时,B发生的概率,其实计算的目标是P(AB)。条件概率公式的通用表达式为P(B|A)=P(AB)/P(A),乘法表达式为P(AB)=P(B|A)P(A)全概率公式:全概率公式综合了所有条
- 费雪的线性判别分析(2)
CS创新实验室
数学基础人工智能机器学习线性代数
《费雪的线性判别分析》分为两部分,这是第二部分,第一部分的连接如下:费雪的线性判别分析(1)3.计算判别阈值如果要判别某个样本属于哪一类,必须计算出阈值w0w_0w0,求解方法有两种:贝叶斯方法。此方法在另外一篇《线性判别分析》中详解最小二乘法。此处演示此方法的求解过程3.1最小二乘法[6]^{[6]}[6]关于最小二乘法的详细讲解,请阅读参考资料[2]的有关章节,在其中对最小二乘法通过多个角度给
- 2025美赛数学建模C题思路模型代码(1.24第一时间更新)
灿灿数模分号
数学建模
2025美赛数学建模C题思路模型代码(1.24第一时间更新)以下为近十年以来的美赛题目所用的模型算法年份题目研究内容数学模型算法2024年MCMA题研究海洋鳗鲡性别比例与资源可用性的关系,开发模型探讨其优劣势Lotka-Volterra模型、费舍尔性别比例理论、响应曲线模型、蒙特卡洛模拟粒子群优化(PSO)、贝叶斯推断、A*搜索、模拟退火2024年MCMB题定位失踪潜水器,准备搜索设备,确定搜索模
- 使用 Pyro 和 PyTorch 的贝叶斯神经网络
无水先生
人工智能综合Pytorch和项目实践pytorch人工智能python
一、说明构建图像分类器已成为新的“helloworld”。还记得当你第一次接触Python时,你的打印“helloworld”感觉很神奇吗?几个月前,当我按照PyTorch官方教程并为自己构建了一个运行良好的简单分类器时,我也有同样的感觉。
- 1.7K star!AI Cover:开源的红包封面[特殊字符]生成器,赶快收藏!
前端后花园
前端热门开源项目人工智能githubjavascript开发语言前端代码片段
欢迎来到前端后花园!我们专注分享前端开源项目,目标是探索分享精选100个高质量的开源项目。这是系列的第3篇文章,分享一个AI红包封面生成开源项目。大家好,我是小前!想要制作一款红包封面?却不懂PS,没关系,小前今天分享的开源项目-AI红包封面生成,输入提示词(eg.蛇年快乐)即可生成符合设计规范的红包封面,快来看看吧!简介AICover是一款开源的红包封面生成器,输入要生成的红包描述,即可快速生成
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要