R语言统计学DOE实验设计:用平衡不完全区组设计(BIBD)分析纸飞机飞行时间实验数据...

全文链接:http://tecdat.cn/?p=31010

平衡不完全区组设计(BIBD)是一个很好的研究实验设计,可以从统计的角度看各种所需的特征点击文末“阅读原文”获取完整代码数据)。

最近我们被客户要求撰写关于BIBD的研究报告,包括一些图形和统计输出。

对于一个BIBD有K个观测,重复r次实验。还有第5参数lamda,记录其中每对实验发生在设计块的数目。

生成一组BIBD设计,设计行列和每块的元素具体数目。如果BIBD(b,v,r,k)存在则 :1=v

我们设置区组

BIB(7,7, 4, 2)

##      [,1] [,2] [,3] [,4]  
## [1,]    2    3    5    6  
## [2,]    3    4    6    7  
## [3,]    1    2    4    6  
## [4,]    1    5    6    7  
## [5,]    2    4    5    7  
## [6,]    1    2    3    7  
## [7,]    1    3    4    5

这种设计不是BIBD,因为处理不是所有重复的设计都有相同的次数,我们可以通过isGUID检查。对于本例:

BIB(7,7, 4, 2)

##      [,1] [,2] [,3] [,4]  
## [1,]    2    3    5    6  
## [2,]    1    5    6    7  
## [3,]    2    4    5    7  
## [4,]    1    2    4    6  
## [5,]    1    2    3    7  
## [6,]    3    4    6    7  
## [7,]    1    3    4    5

然后,我们修改参数,来查看该模型是否生产BIBD

my.design

##      [,1] [,2] [,3]  
## [1,]    1    2    6  
## [2,]    2    3    7  
## [3,]    1    4    7  
## [4,]    3    4    6  
## [5,]    1    3    5  
## [6,]    2    4    5  
## [7,]    5    6    7


##  
## [1] The design is a balanced incomplete block design w.r.t. rows.

从结果来看,该设计是一个平衡不完全区组设计 。在这种情况下,我们能够生成有效BIBD实验使用指定的参数。


点击标题查阅往期内容

outside_default.png

R语言因子实验设计nlme拟合非线性混合模型分析有机农业施氮水平

outside_default.png

左右滑动查看更多

outside_default.png

01

outside_default.png

02

outside_default.png

03

outside_default.png

04

outside_default.png

分析Box-Behnken设计

Box-Behnken设计的优良在于,可以将其应用于分析2至5个因子的实验。

下面将其扩展到回归模型的实验设计中,比如在下面的一个纸飞机的飞行时间的实验。这是另一个多种因子的实验,在四个变量。这些数据已经被编码。原始的变量是机翼面积A,翼状R,机身宽度W,和长度L , 在数据集中的每个观测代表的10次重复的的纸飞机在每个实验条件下的结果。我们在这里研究平均飞行时间 。

使用响应曲面法对变量进行回归模型拟合

相关视频

查看模型结果

summary(heli.rsm)

##  
## Call:  
## rsm(formula = ave ~ block + SO(x1, x2, x3, x4), data = heli)  
##  
##               Estimate Std. Error  t value  Pr(>|t|)     
## (Intercept) 372.800000   1.506375 247.4815 < 2.2e-16 ***  
## block2       -2.950000   1.207787  -2.4425 0.0284522 *   
## x1           -0.083333   0.636560  -0.1309 0.8977075     
## x2            5.083333   0.636560   7.9856 1.398e-06 ***  
## x3            0.250000   0.636560   0.3927 0.7004292     
## x4           -6.083333   0.636560  -9.5566 1.633e-07 ***  
## x1:x2        -2.875000   0.779623  -3.6877 0.0024360 **  
## x1:x3        -3.750000   0.779623  -4.8100 0.0002773 ***  
## x1:x4         4.375000   0.779623   5.6117 6.412e-05 ***  
## x2:x3         4.625000   0.779623   5.9324 3.657e-05 ***  
## x2:x4        -1.500000   0.779623  -1.9240 0.0749257 .   
## x3:x4        -2.125000   0.779623  -2.7257 0.0164099 *   
## x1^2         -2.037500   0.603894  -3.3739 0.0045424 **  
## x2^2         -1.662500   0.603894  -2.7530 0.0155541 *   
## x3^2         -2.537500   0.603894  -4.2019 0.0008873 ***  
## x4^2         -0.162500   0.603894  -0.2691 0.7917877     
## ---  
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
##  
## Multiple R-squared:  0.9555, Adjusted R-squared:  0.9078  
## F-statistic: 20.04 on 15 and 14 DF,  p-value: 6.54e-07  
##  
## Analysis of Variance Table  
##  
## Response: ave  
##                     Df  Sum Sq Mean Sq F value    Pr(>F)  
## block                1   16.81   16.81  1.7281  0.209786  
## FO(x1, x2, x3, x4)   4 1510.00  377.50 38.8175 1.965e-07  
## TWI(x1, x2, x3, x4)  6 1114.00  185.67 19.0917 5.355e-06  
## PQ(x1, x2, x3, x4)   4  282.54   70.64  7.2634  0.002201  
## Residuals           14  136.15    9.72                   
## Lack of fit         10  125.40   12.54  4.6660  0.075500  
## Pure error           4   10.75    2.69                   
##  
## Stationary point of response surface:  
##         x1         x2         x3         x4  
##  0.8607107 -0.3307115 -0.8394866 -0.1161465  
##  
## Stationary point in original units:  
##         A         R         W         L  
## 12.916426  2.434015  1.040128  1.941927  
##  
## Eigenanalysis:  
## $values  
## [1]  3.258222 -1.198324 -3.807935 -4.651963  
##  
## $vectors  
##          [,1]       [,2]       [,3]        [,4]  
## x1  0.5177048 0.04099358  0.7608371 -0.38913772  
## x2 -0.4504231 0.58176202  0.5056034  0.45059647  
## x3 -0.4517232 0.37582195 -0.1219894 -0.79988915  
## x4  0.5701289 0.72015994 -0.3880860  0.07557783

绘制拟合值的等高线图

contour(

outside_default.png

可视化结果

围绕拟合面,我们可以画出样本拟合点的位置。默认情况下,每个小区显示多个轮廓线的图像。可以看到,图中显示的不一定是等高线图的中心(默认可变范围是从数据中获得 );而是它设置在在坐标轴上的变量对应的值。因此,左上角的图中绘制了在x1和x2对应的拟合值,其中x3 =-0.839和x4=-0.116, 在固定的值,最大的就是该坐标X1 =0.861,X2=-0.331。


outside_default.png

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《R语言统计学DOE实验设计:用平衡不完全区组设计(BIBD)分析纸飞机飞行时间实验数据》。

outside_default.png

outside_default.png

点击标题查阅往期内容

非线性混合效应 NLME模型对抗哮喘药物茶碱动力学研究

R语言用线性混合效应(多水平/层次/嵌套)模型分析声调高低与礼貌态度的关系

R语言LME4混合效应模型研究教师的受欢迎程度

R语言nlme、nlmer、lme4用(非)线性混合模型non-linear mixed model分析藻类数据实例

R语言混合线性模型、多层次模型、回归模型分析学生平均成绩GPA和可视化

R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例

R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据

R语言 线性混合效应模型实战案例

R语言混合效应逻辑回归(mixed effects logistic)模型分析肺癌数据

R语言如何用潜类别混合效应模型(LCMM)分析抑郁症状

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言建立和可视化混合效应模型mixed effect model

R语言LME4混合效应模型研究教师的受欢迎程度

R语言 线性混合效应模型实战案例

R语言用Rshiny探索lme4广义线性混合模型(GLMM)和线性混合模型(LMM)

R语言基于copula的贝叶斯分层混合模型的诊断准确性研究

R语言如何解决线性混合模型中畸形拟合(Singular fit)的问题

基于R语言的lmer混合线性回归模型

R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型

R语言分层线性模型案例

R语言用WinBUGS 软件对学术能力测验(SAT)建立分层模型

使用SAS,Stata,HLM,R,SPSS和Mplus的分层线性模型HLM

R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型

SPSS中的多层(等级)线性模型Multilevel linear models研究整容手术数据

用SPSS估计HLM多层(层次)线性模型模型

outside_default.png

outside_default.png

outside_default.png

你可能感兴趣的:(r语言,开发语言)