- 目标检测中的NMS算法详解
好的,我们来详细解释一下目标检测中非极大值抑制(Non-MaximumSuppression,NMS)的相关概念和计算过程。1.为什么需要NMS?问题:目标检测模型(如FasterR-CNN,YOLO,SSD等)在推理时,对于同一个目标物体,通常会预测出多个重叠的、不同置信度(confidencescore)的候选边界框(BoundingBoxes)。直接输出所有这些框会导致:结果冗余:同一个物体
- Yolov5-obb(旋转目标poly_nms_cuda.cu编译bug记录及解决方案)
关于在执行pythonsetup.pydevelop#or"pipinstall-v-e."时poly_nms_cuda.cu报错问题。前面步骤严格按照install.md环境1.pytorch版本较低时(我的是1.10):poly_nms_cuda.cu文件添加”#defineeps1e-8“,删除“constdoubleeps=1E-8;”这句2.pytorch版本较高时(我用的是1.27)h
- 西门子SINEC NMS曝高危漏洞:存在权限提升与远程代码执行风险
FreeBuf-
安全web安全php
西门子近日发布紧急安全公告,披露其工业级旗舰网络管理系统SINECNMS存在多个高危漏洞,影响4.0之前的所有版本。攻击者利用这些漏洞可获取管理员权限、执行任意代码或在关键基础设施网络中实施权限提升。漏洞概况公告明确指出:"SINECNMSV4.0之前版本存在多个漏洞,攻击者可借此提升权限并执行任意代码"。这些漏洞在CVSSv3.1评分中高达9.8分,对部署该系统的工业控制(OT)环境构成严重威胁
- 万字长文带你搞懂yolov5和yolov8以及目标检测相关面试
起个别名
C++YOLO目标检测目标跟踪
一、与yoloV4相比,yoloV5的改进输入端:在模型训练阶段,使用了Mosaic数据增强、自适应锚框计算、自适应图片缩放基准网络:使用了FOCUS结构和CSP结构Neck网络:在Backbone和最后的Head输出层之间插入FPN_PAN结构Head输出层:训练时的损失函数GIOU_Loss,预测筛选框的DIOU_nms二、yolov5网络结构预处理在模型预处理阶段,使用了Mosaic数据增强
- bounding box 回归
【目标检测】基础知识:IoU、NMS、Boundingboxregression-知乎(zhihu.com)
- 目标检测新纪元:DETR到Mamba实战解析
加油吧zkf
图像处理python分类人工智能目标检测
【实战分享】目标检测的“后DEⱯ”时代:DETR/DINO/RT-DETR及新型骨干网络探索(含示例代码)目标检测从YOLO、FasterR-CNN到Transformer结构的DETR,再到DINO、RT-DETR,近两年出现了许多新趋势:更高效的端到端结构、更少的手工设计(比如不再需要NMS)、以及新型轻量化骨干网络(比如Mamba、ConvNeXt、ViT等)被引入检测任务中。作为从事目标检
- RT‑DETR 系列发展时间顺序
要努力啊啊啊
计算机视觉深度学习计算机视觉目标检测人工智能
RT‑DETR系列发展时间顺序RT‑DETR系列是由百度提出的一系列基于Transformer的实时端到端目标检测器,以下列出了从提出到演化的主要milestone:时间线概览版本时间主要改进/特点DETR2020–05(论文)oai_citation:0‡labellerr.comoai_citation:1‡arxiv.orgTransformer架构首次用于端到端检测,无需NMSRT‑DET
- 如何用WHIP协议WebRTC推流到NodeMediaServer
illuspas
MediaServerwebrtc服务器实时音视频音视频
NMSv3.21WHIP协议WebRTC推流指南一、协议实现NMSv3.21基于WHIP协议(WebRTC-HTTPIngestionProtocol)重新实现WebRTC推流功能。二、功能特性客户端开放:支持自定义实现流采集能力:摄像头/麦克风捕获桌面/应用窗口采集Canvas/Video元素捕获支持视频滤镜、AI特效等完整WebRTC功能支持(参考WebRTCSamples)三、配置说明[we
- 如何批量将word文档转换为PDF
渍渍渍197
wordpdfc#
新建一个txt文件将以下代码复制进去OnErrorResumeNextSetwordTest=CreateObject("Word.Application")IfErr.Number<>0ThenMsgBox"MicrosoftWordnotfound!PleaseinstallWordfirst.",vbCritical,"Error"WScript.QuitEndIfwordTest.Quit
- Yolov5 ONNX Runtime 的 Python 部署
爱钓鱼的歪猴
#目标检测模型部署YOLO
这里使用的yolov56.2,使用export.py很方便地得到onnx格式的模型。然后用onnxruntime推理框架在Python上进行部署。主要是为了测试模型的准确,模型部署的最终是用C++部署,从而部署在嵌入式设备等。整个代码分为四个部分:1、对输入进行预处理;2、onnxruntime推理得到输出;3、对输出进行后处理4、画预测框代码的难点是nms处理。代码尚存在的缺陷是,将输入图像处理
- Python与C++检测框过滤差异分析
马里马里奥-
pythonc++开发语言人工智能
Python与C++检测框过滤差异分析在目标检测任务中,检测框过滤是后处理的关键环节。本文将从实现方式、性能表现和适用场景三个维度,对比分析Python与C++在检测框过滤中的差异。检测框过滤基本原理检测框过滤的核心是非极大值抑制(NMS)算法,其数学表达式为:NMS(B,S,θ)={bi∣∀bj,area(bi∩bj)area(bi∪bj)0:i=order[0]keep.append(i)xx
- YOLOv4 正负样本划分详解
要努力啊啊啊
计算机视觉YOLO目标检测深度学习计算机视觉目标跟踪
✅YOLOv4正负样本划分详解一、前言在目标检测中,正负样本划分是训练过程中的关键环节,它决定了哪些预测框参与损失计算,从而影响模型的学习效果。YOLOv4在YOLOv3的基础上进行了改进,包括:使用CSPDarknet53主干网络;引入PANet特征融合结构;支持Mosaic数据增强;使用CIoULoss和DIoU-NMS;但在正样本划分逻辑上,YOLOv4保持了与YOLOv3类似的设计方式,并
- 【目标检测02】非极大值抑制 NMS
贝与贝
1024程序员节人工智能深度学习机器学习目标检测计算机视觉
文章目录1.前言2.原理3.代码实现1.前言在检测图像中的目标时,一个目标可能会被预测出多个矩形框,而实际上我们只需要一个,如何消除冗余的边界框呢?一种方简单的方案是提升置信度的阈值,过滤掉低置信度的边界框。而另一种方案是使用非极大值抑制NMS。NMS的做法是,选出某个类别得分最高的预测框,然后看哪些预测框跟它的IoU大于阈值,就把这些预测框给丢弃掉。这里IoU的阈值是超参数,需要提前设置。2.原
- YOLOv2 中非极大值抑制(NMS)机制详解与实现
要努力啊啊啊
计算机视觉YOLO目标跟踪人工智能计算机视觉深度学习
YOLOv2中NMS的详解一、什么是NMS?定义:NMS(非极大值抑制)是一种目标检测中的后处理技术,用于去除重复预测的边界框,保留置信度最高且不重叠的边界框。目标:提高检测结果的准确性;避免同一物体被多次检测;减少误检和冗余框;二、YOLOv1中的NMS实现来源依据:来自YouOnlyLookOnce:Unified,Real-TimeObjectDetection(CVPR2016)输出结构回
- YOLOv1 技术详解:NMS(非极大值抑制)的工作原理与实现细节
要努力啊啊啊
计算机视觉YOLO目标跟踪人工智能计算机视觉深度学习算法
YOLOv1技术详解:NMS(非极大值抑制)的工作原理与实现细节一、前言在目标检测任务中,模型往往会输出多个边界框(boundingbox),其中很多是针对同一物体的重复预测。为了提高检测结果的准确性和简洁性,我们需要使用一种后处理技术来去除这些冗余的预测框——这就是NMS(Non-MaximumSuppression,非极大值抑制)。本文将围绕YOLOv1中的NMS实现机制展开,详细介绍:NMS
- C# Jenkins 自动构建
zzr494684778
asp.net
一、创建jenkins项目1、安装jenkins,MSBuild,Tomcat,WDeploy必须安装2、打开http://192.168.18.84:8080/(192.168.18.84:你所配置的服务器。8080:默认端口)3、安装插件:系统管理—管理插件LogParserPluginMSBuildPluginPost-BuildScriptPlug-inPythonPluginTextFi
- Prim算法实现 -- 结合优先级队列
NLP_wendi
数据结构与算法Prim算法
什么是Prim算法?classPrim2:"""P算法最小生成树算法MSTMinimalSpanningTree保证整个拓扑图的所有路径之和最小"""def__init__(self,graph):n=len(graph)#存放横切边self.min_heap=[]#类似于visited数组,记录节点是否在mst中self.inMst=[False]*nself.weightSum=0#三元组se
- Transformer目标检测 | DETR论文解读
DeepDriving
自动驾驶与深度学习transformer目标检测深度学习
0.前言DETR是首个将Transformer应用到2D目标检测任务中的算法,由Facebook于2020年在论文《End-to-EndObjectDetectionwithTransformers》中提出。与传统目标检测算法不同的是,DETR将目标检测任务视为一个直接的集合预测问题,采用基于集合的全局损失通过二分匹配实现一对一的预测输出,不需要非极大值抑制(NMS)和手工设计Anchor这些操作
- 目标检测领域最新突破:2025年你必须掌握的5大创新方向!附教程!
学算法的程霖
目标检测人工智能计算机视觉机器学习深度学习自然语言处理大模型
目标检测是计算机视觉的核心任务之一,涉及算法学习、应用场景优化和学术创新三个关键方向。以下是系统的总结和建议:一、目标检测算法学习方向1.基础理论核心任务:定位(BoundingBox)+分类(Class)。关键概念:IoU(交并比)、NMS(非极大值抑制)、Anchor机制。损失函数:分类损失(Cross-Entropy)、回归损失(SmoothL1、GIoU)。必学经典模型:Two-Stage
- Transformer 架构在目标检测中的应用:YOLO 系列模型解析
水花花花花花
transformer架构目标检测
目录Transformer架构在目标检测中的应用:YOLO系列模型解析一、YOLO模型概述二、YOLO模型的核心架构(一)主干网络(二)颈部结构(三)头部结构三、YOLO模型的工作原理(一)输入图像预处理(二)特征提取与融合(三)边界框预测与类别分类(四)损失函数计算与优化(五)非极大值抑制(NMS)后处理四、YOLO模型的版本演进(一)YOLOv1:开启实时目标检测之门(二)YOLOv2和YOL
- RT-DETR实时端到端目标检测器
SUST小生
人工智能目标跟踪
RT-DETR(Real-TimeDEtectionTRansformer)是一种新型的实时端到端目标检测器,由百度公司的研究者提出。这项工作首次实现了在实时目标检测任务中不依赖于后处理(如非极大值抑制NMS)的端到端检测器。RT-DETR的主要特点包括:实时性能:RT-DETR能够在保持高准确性的同时,实现实时的检测速度。例如,RT-DETR-L在COCOval2017数据集上达到了53.0%的
- OpenCV中Canny、Sobel和Laplacian边界检测算法原理和使用示例
点云SLAM
算法opencv算法人工智能计算机视觉边界检测算法Canny边缘检测Laplacian算子
OpenCV中提供了多种边界检测(EdgeDetection)算法,常用于图像分割、特征提取、物体识别等任务。以下是OpenCV中几种常见的边缘检测算法及其原理、使用方法:一、Canny边缘检测(最常用)原理:Canny是一种多阶段边缘检测算法,步骤如下:高斯滤波(降噪)计算梯度(Sobel算子)非极大值抑制(NMS)双阈值处理边缘连接(滞后阈值)OpenCV示例:#includeusingnam
- 计算机视觉、目标检测、视频分析的过去和未来:目标检测从入门到精通 ------ YOLOv8 到 多模态大模型处理视觉基础任务
shiter
人工智能系统解决方案与技术架构音视频目标检测YOLO
文章大纲计算机视觉项目的关键步骤计算机视觉项目核心内容概述步骤1:确定项目目标步骤2:数据收集和数据标注步骤3:数据增强和拆分数据集步骤4:模型训练步骤5:模型评估和模型微调步骤6:模型测试步骤7:模型部署常见问题目标检测入门什么是目标检测目标检测算法的分类一阶段算法:YOLO算法的一般架构目标检测的重要概念:anchor锚框目标检测的重要概念:NMS非极大值抑制Transformer与DETR评
- C# 反射 静态类 静态方法 static
chchch521761
.netcoreC#.netc#
C#通过反射调用实例类或静态类的方法一、创建类//反射对象类//ruleAssembly为dell文件、ruleNmspaceName:命名空间;ruleClsName:类名//如果是泛型,ruleClsName后面需要增加一个“`1”TyperuleType=Assembly.Load(ruleAssembly).GetType(ruleNmspaceName+"."+ruleClsName,t
- 经典的YOLOv3和YOLOV5算法详解及代码复现
清风AI
深度学习算法详解及代码复现YOLO算法yolov3yolov5计算机视觉人工智能
YOLO的基本原理YOLO(YouOnlyLookOnce)是一种革命性的目标检测算法,它巧妙地将复杂的检测问题转化为回归问题。这种方法的核心在于将输入图像划分为S×S网格,每个网格负责预测其内部的物体位置和类别。具体来说,每个网格需要预测(B×5+C)个值,其中B代表边界框数量,C为类别数。最终,模型输出一个S×S×(B×5+C)大小的张量。YOLO的一个关键创新是使用非极大值抑制(NMS)算法
- NMS YOLO
有人给我介绍对象吗
AI论文写作YOLO
xc=prediction[:,4:mi].amax(1)>conf_thres#candidatesxc=prediction[:,4:mi].amax(1)>conf_thres#candidates
- vba批量化调整word的图和图表标题
摩天崖FuJunWANG
wordc#开发语言vba程序
@vba代码'将图片进行居中操作SubChangePictureFormate()DimoParaAsParagraphDimoRangeAsRangeDimiAsLongDimbeforeIsPictureAsBooleanbeforesIsPicture=False'确保文档中至少有图片IfActiveDocument.InlineShapes.Count=0ThenMsgBox"没有找到图片
- 全局异常处理
t518vs20s
java全局异常统一异常
packagecn.com.app.base.exception;importcn.com.app.base.dto.SystemExceptionMsgDto;importcn.com.app.base.service.SystemExcepWxWarnService;importorg.springframework.beans.factory.annotation.Autowired;imp
- C#使用NMS与ActiveMQ通讯问题总结:如何生成Stomp.js中的headers对象
a123_z
C#
在html5中使用Stomp.js与ActiveMQ通讯时,可以借助headers对象进行一些特殊的约定,例如://发送消息时,可以携带一个Headers对象varhds={"name":"测试","msg":"测试头部发送"}client.send(destination,hds,text);那么,在C#中如何实现这个功能呢?其实很简单,使用ITextMessage中的Properties属性就
- CCNP300-410学习笔记(251-281)
今夕何夕sy
CCNP题库学习
251、RefertotheexhibitAnengineerconfiguredNetFlowonR1buttheNMSservercannotseetheflowfromethernet0/0ofR1.Whichconfigurationresolvestheissue?A.flowmonitorFlowmonitor1sourceEthernet0/0B.interfaceEthernet0
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST