- python怎么安装sympy库_SymPy库常用函数
weixin_39528559
简介SymPy是一个符号计算的Python库。它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。它完全由Python写成,不依赖于外部库。SymPy支持符号计算、高精度计算、模式匹配、绘图、解方程、微积分、组合数学、离散数学、几何学、概率与统计、物理学等方面的功能。(来自维基百科的描述)Sympy安装方法安装命令:pipinstallsympy基本数值类型实数,有理数和整
- python:求解爱因斯坦场方程
belldeep
pythonpython爱因斯坦
在物理学中,爱因斯坦的广义相对论(GeneralRelativity)是描述引力如何作用于时空的理论。广义相对论由爱因斯坦在1915年提出,并被阿尔伯特·爱因斯坦、纳森·罗森和纳尔逊·曼德尔斯塔姆共同发展。广义相对论的核心方程是爱因斯坦场方程,它描述了时空的几何结构如何由物质的分布决定。如果你想用Python来探索或模拟广义相对论中的某些现象,你可以从以下几个方面入手:1.使用现有的库Python
- PCS的dq坐标系控制方程化简推导
weixin_42668920
电力电子算法算法电力电子
αβ坐标系下的控制方程为:Uαβ–Eαβ=RIαβ+Ld(Iαβ)/dtUαβ–Eαβ-RIαβ=Ld(Iαβ)/dt令Uαβ–Eαβ-RIαβ=Xαβ有:Xαβ=Ld(Iαβ)/dt根据dq逆变换公式Xαβ=[cosθ-sinθ][Xd][sinθcosθ][Xq]得到Xα=Xdcosθ–XqsinθXβ=Xdsinθ+Xqcos带入Xαβ=Ld(Iαβ)/dt得到Xdcosθ–Xqsinθ=L
- 差分解方程
やっはろ
django
差分解方程差分法在数值求解偏微分方程(PDEs)和常微分方程(ODEs)时,可以分为隐式格式和显式格式。以下是两者的主要区别:显式格式(ExplicitScheme)时间推进:显式格式在每一个时间步直接计算出下一个时间步的解。不需要求解非线性方程组,因为每个时间步的解可以直接从上一个时间步的解计算得出。稳定性:通常要求时间步长较小,以保证数值稳定性。稳定性与时间步长和空间步长的比值有关,通常由一个
- 人工智能的本质解构:从二进制桎梏到造物主悖论
Somnolence.·.·.·.
人工智能人工智能ai
一、数学牢笼中的困兽:人工智能的0-1本质人工智能的底层逻辑是数学暴力的具象化演绎。晶体管开关的物理震荡被抽象为布尔代数的0-1序列,冯·诺依曼架构将思维简化为存储器与运算器的机械对话。即使深度神经网络看似模拟人脑突触,其本质仍是矩阵乘法的迭代游戏——波士顿动力机器人的空翻动作不过是微分方程求解的物理引擎呈现,AlphaGo的围棋神话只是蒙特卡洛树搜索的概率统计。这种基于有限离散数学的架构,注定人
- erf 和 erfc 函数介绍以及在通信系统中的应用
正是读书时
知识点概率论信息与通信
1.误差函数(erf)误差函数\(\text{erf}(x)\)是一种特殊函数,在概率、统计和偏微分方程中有广泛应用。它的定义为:\[\text{erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^xe^{-t^2}\,dt\]特性:-\(\text{erf}(0)=0\)-\(\text{erf}(\infty)=1\)-\(\text{erf}(-x)=-\text{erf}
- 工程计算4——线性方程组的问题敏感性
sda42342342423
math
扰动方程方程组(A+△A)x=b+△b为方程Ax=b的扰动方程△A,△b为由舍入误差所产生的扰动矩阵和扰动向量近似解与Ax=b的解x的相对误差不大称为良态方程,否则为病态方程。向量和矩阵的范数为了研究线性方程组近似解的误差估计和迭代法的收敛性,引入的对向量和矩阵的度量。向量的范数定义设XϵRn,||X||表示定义在Rn上的一个实值函数,称之为X的范数,性质非负性:即对一切X∈Rn,X≠0,||X|
- 不坑盒子Office插件:全能助手,办公效率的革命性提升
不坑老师
microsoftwordexcelpowerpointwps
在快节奏的办公环境中,时间就是金钱,效率就是生命。不坑盒子Office插件,一款专为Word、Excel、PPT和WPS三件套设计的全能办公助手,致力于让办公工作变得更加轻松、高效。一键式自动化,让复杂工作变简单自动排版:快速设置正文、标题格式,告别手动调整。OCR文字识别:图片文字快速转换,需要腾讯云OCR接口支持。化学公式编辑:自动排版化学方程式,让科学文档更专业。表格智能填充:一键编号填充,
- LeetCode--32. 最长有效括号【栈和dp】
Rinai_R
LeetCodeleetcode算法职场和发展golang数据结构动态规划
32.最长有效括号前言分享一下dp和栈两个方法正文给你一个只包含'('和')'的字符串,找出最长有效(格式正确且连续)括号子串的长度。这道题与20.有效的括号类似,但是这道题需要计算出最长的有效括号字串的长度,所以做法并不完全一样。动态规划该题目dp方法最难的就是得出状态转移方程,只要克服了这一点,剩下都很简单,下面,我们以字符串"((())()("为例子。从左向右遍历,设定f[i]为包含当前下标
- 【LeetCode周赛】6433.矩阵中移动的最大次数
积跬步方千里
LeetCodeleetcode算法
动态规划五部曲classSolution{public:intmaxMoves(vector>&grid){/*动态规划解决单序列问题:根据题目的特点找出当前遍历元素对应的最优解(或解的数目)和前面若干元素(通常是一个或两个)的最优解(或解的数目)的关系,并以此找出相应的状态转移方程。从题目的描述来看,需要从当前遍历的元素dp更新未来的dp值,这显然不符合动态规划的思想,所以需要将问题进行转换,转
- 解锁动态规划的奥秘
zxfbx
动态规划算法
前言:在动态规划的众多问题中,多状态DP问题是一个非常重要的类别。它的难点在于如何设计合适的状态表示和转移方程,从而高效地解决问题。多状态DP的核心思想在于:针对问题的不同属性或限制条件,将状态表示扩展为多个维度,使得状态可以更加精确地描述问题的子结构。这种方法既可以帮助我们更好地分解问题,又能够在求解过程中保留更多的信息,从而为最终的结果提供完整的支持。在实际应用中,多状态DP常用于解决路径规划
- 背包入门——LeetCode416. 分割等和子集
sunnyLKX
LeetCodejava动态规划leetcode算法数据结构
题目描述:给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。注意:每个数组中的元素不会超过100数组的大小不会超过200示例1:输入:[1,5,11,5]输出:true解释:数组可以分割成[1,5,5]和[11].示例2:输入:[1,2,3,5]输出:false解释:数组不能分割成两个元素和相等的子集.思路:动态规划的基本流程是定义状态并找到状态转移方程,
- 2.【线性代数】——矩阵消元
sda42342342423
math线性代数矩阵
二矩阵消元1.消元法2.单行或者单列的矩阵乘法2.1单行矩阵乘法2.2单列矩阵乘法3.用矩阵记录消元过程(初等矩阵)【行的线性组合(数乘和加法)】3.1row2-3row1的矩阵描述3.2row3-2row2的矩阵描述3.3矩阵乘法的性质4.用矩阵记录消元过程(置换矩阵)行列交换4.1行交换4.1列交换5.逆矩阵1.消元法求解方程组{x+2y+z=23x+8y+z=124y+z=2\begin{c
- 高等代数复习:线性空间
爱吃白饭
高等代数线性代数学习笔记
文章目录线性空间定义和性质线性相关性与秩基与维数矩阵的秩同构坐标子空间子空间的定义和性质子空间的和与交直和陪集和商空间解线性方程组本篇文章适合个人复习翻阅,不建议新手入门使用线性空间定义和性质定义:(线性空间)设集合VVV和数域K\mathbb{K}K,在VVV上定义加法+:V×V→V,(α,β)↦α+β+:V\timesV\toV,(\alpha,\beta)\mapsto\alpha+\bet
- 数学建模与MATLAB实现:稳定状态模型与资源管理策略
青橘MATLAB学习
#数学建模Matlab编程实验数学建模算法
引言在实际问题中,动态过程的瞬时性态往往难以直接分析,而研究其稳定状态的特征则更具实际意义。本章介绍如何通过微分方程稳定性理论,结合再生资源管理、种群竞争等案例,分析系统的平衡点及稳定性,为实际决策提供数学依据。一、微分方程稳定性理论1.1基本概念自治系统:若微分方程组不显含时间变量ttt,则称为自治系统。例如:dxdt=F(x)\frac{dx}{dt}=F(x)dtdx=F(x)非自治系统可通
- Zane的线代学习笔记 #6 置换与转置
ZaneYooo
Zane的线代学习笔记学习笔记算法
前言上篇笔记的末尾我们提到过置换矩阵和转置的内容,不过并不完整,在这篇笔记中,我会对这两个知识点进行补充,讲完之后,我们的线性方程部分就基本上讲完了。正文1.排列与置换矩阵上篇笔记的末尾提到了置换矩阵的概念,不过并不完整,现在,我们将会把一些不严谨的地方补上,然后将上一篇的置换矩阵部分做一个归纳整理。首先,上篇笔记我们说置换矩阵是单位矩阵进行行交换得到的(或者就是单位矩阵本身),但是为什么说置换矩
- 2021-09-09二分法求方程近似解【C语言】
xxxjrr
算法学习c语言
文章目录1.题目描述2.题解思路与算法3.代码1.题目描述二分法是一种求解方程近似根的方法。对于一个函数f(x),使用二分法求f(x)近似解的时候,我们先设定一个迭代区间(在这个题目上,我们之后给出了的两个初值决定的区间[−20,20]),区间两端自变量x的值对应的f(x)值是异号的,之后我们会计算出两端x的中点位置x′所对应的f(x′),然后更新我们的迭代区间,确保对应的迭代区间的两端x的值对应
- 代码随想录Day43 | 300.最长递增子序列,674.最长连续递增序列,718.最长重复子数组
Sanctyzl
代码随想录算法训练营打卡算法动态规划leetcodejava数据结构
代码随想录Day43|300.最长递增子序列,674.最长连续递增序列,718.最长重复子数组300.最长递增子序列dp[i]定义:从0-i范围内计算,以nums[i]为结尾的最长严格递增子序列的长度。状态转移方程:if(nums[i]>nums[j])dp[i]=Math.max(dp[i],dp[j]+1);classSolution{publicintlengthOfLIS(int[]num
- 一阶系统和二阶系统
不知道是谁2
程序人生
一阶系统和二阶系统是动态系统分析中的两个基本概念,它们的主要区别在于系统的响应特性、阶次以及对输入信号的处理方式:1.**阶数**:-**一阶系统**:这类系统只有一个积分项,如常微分方程中的形式为dy/dt=k*x(t)+b,其中dy/dt表示状态变化率,k是增益系数,b可能是偏置。它的响应速度快,直接对输入做出反应。-**二阶系统**:有两个阶跃响应,通常包含一个导数项和一个积分项,如d^2y
- 从小白开始的动态规划
不想编程小谭
算法c++算法动态规划
一、动态规划的核心思想动态规划(DP)通过拆分问题+记忆化计算解决复杂问题,核心步骤为:定义状态:用变量(如dp[i])表示子问题的解状态转移方程:建立子问题之间的关系式初始化:确定基础情况的初始值计算顺序:确定填表方向(自底向上/自顶向下)二、动态规划解题四部曲分析问题是否具有重叠子问题和最优子结构定义明确的状态表示推导状态转移关系处理边界条件并实现三、经典DP问题分类与实战类型1:记忆化递归(
- 【力扣】279.完全平方数
睡不着还睡不醒
leetcodeleetcode算法职场和发展
AC截图题目思路总结动态规划方程得出的思路找到最小子问题,涉及到当前数和上一个数的跨度,以及上一个数的结果如何变成当前数的结果这两个点。1,当前数n和上一个数的跨度:假设n=12,上一个数可以是11,11+1=12,OK;上一个数可以是8,因为8+4=12;上一个数可以是3,因为3+9=12;为什么11、8、3可以?因为题目要求是完全平方数相加。只有11加上1(11),8+4(22),3+9(3*
- 并查集题目
好好学Java吖
javaleetcode算法数据结构
并查集题目聚合一块(蓝桥)合根植物(蓝桥)等式方程的可满足性省份数量并查集(Union-Find)算法是一个专门针对「动态连通性」的算法。双方向的连通。模板:classUF{//连通分量个数privateintcount;//存储每个节点的父节点privateint[]parent;//n为图中节点的个数publicUF(intn){this.count=n;parent=newint[n];fo
- 数学与光学:光的传播和干涉的数学描述
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《数学与光学:光的传播和干涉的数学描述》关键词:光学,数学模型,光传播,干涉,波动方程摘要:本文旨在深入探讨光学中光的传播和干涉现象的数学描述。我们将从基础概念出发,逐步引入光的传播路径分析、斯涅尔定律和光的衍射现象,再到干涉原理和数学模型,最后探讨特殊情况下的干涉现象及其应用。文章将结合数学公式和编程实例,提供清晰的逻辑推理和分析过程,以帮助读者更好地理解和掌握这些核心概念。目录大纲《数学与光学
- 有限长序列的z变换收敛域_几类序列的Z变换收敛域.PPT
沈阳无距科技
有限长序列的z变换收敛域
几类序列的Z变换收敛域第七章离散时间系统的Z域分析本章的主要内容z变换定义、典型序列的z变换z变换的收敛域逆z变换z变换的基本性质z变换与拉氏变换的关系利用z变换解差分方程离散系统的系统函数序列的傅里叶变换第一节引言一、Z变换方法的发展历史1730年,英国数学家棣莫弗(DeMoivre1667-1754)将生成函数(generationfunction)的概念引入概率理论中。19世纪拉普拉斯(P.
- 机器学习数学基础:20.方程组解的结构
@心都
机器学习数学基础机器学习人工智能
一、教程简介本教程专门为线性代数零基础的小白打造,旨在全面且细致地讲解解方程组与基础解系的相关知识,助力大家逐步扎实地掌握这一重要内容板块。二、知识目标透彻理解非齐次与齐次线性方程组的定义、本质区别以及对应的解法。熟练掌握判断方程组解的存在性的方法,精准把握秩在其中起到的决定性作用。能够独立且准确地求解齐次线性方程组,并规范地表示出其通解。精通判断一个向量组是否为齐次线性方程组的基础解系的方法,并
- 1.31-子序列问题
_Chipen
算法知识与算法题leetcodec++数据结构算法
Code-1.31-子序列问题300.最长递增子序列题目分析1.状态表示dp[i]表示:以i结尾的所有子序列中,最长递增子序列的长度。2.状态转移方程dp[i]长度为1->1长度大于1->nums[j]max(dp[j]+1)3.初始化把表里所有值初始化为1。4.填表顺序从左往右。5.返回值dp表中的最大值。代码实现classSolution{public:intlengthOfLIS(vecto
- Code-1.16-路径问题
_Chipen
算法知识与算法题动态规划算法leetcode数据结构c++
Code-1.16-路径问题62.不同路径题目62.不同路径一个机器人位于一个mxn网格的左上角(起始点在下图中标记为“Start”)。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。问总共有多少条不同的路径?讲解算法原理状态表示:以[i,j]为结尾,走到[i,j]位置时,一共有多少方式。状态转移方程:最近的一步,划分问题。dp[i][j]=dp[
- 【动态规划算法】【Python实现】最长公共子序列
「已注销」
动态规划算法Python
文章目录@[toc]问题描述最长公共子序列的结构子问题的递归结构c[i][j]c[i][j]c[i][j]递归方程时间复杂性构造最长公共子序列`Python`实现算法的改进问题描述给定两个序列X={ x1,x2,⋯ ,xm }X=\set{x_{1},x_{2},\cdots,x_{m}}X={x1,x2,⋯,xm}和Y={ y1,y2,⋯ ,yn }Y=\set{y_{1},y_{2},\cdo
- python安装jupyter
qq_27390023
pythonjupyter
JupyterNotebook的本质是一个Web应用程序,便于创建和共享程序文档,支持实时代码,数学方程,可视化和markdown。用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等。###安装pip##pip是一个安装和管理Python包的工具wgethttps://bootstrap.pypa.io/get-pip.pypython3get-pip.py##创建软连接ln-s/usr/
- 线性回归模型全攻略:原理、步骤与应用实例
..蓝桉...
线性回归算法回归人工智能机器学习python
基本概念理论:在线性回归中,我们通常有一个或多个自变量(X)和一个因变量(Y)。模型的目标是找到一条最佳拟合直线,使得这条直线能够最好地描述(X)和(Y)之间的关系。这条直线的方程通常表示为:(Y=\beta_0+\beta_1X_1+\beta_2X_2+...+\beta_pX_p+\epsilon)其中,(Y)是因变量(目标变量)(X_1,X_2,...,X_p)是自变量(特征)(\beta
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,Django@Python2.x 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f