没想到要创造那么多状态
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
func maxProfit(prices []int) int {
dp := make([][]int, len(prices))
for i := 0; i < len(prices); i++ {
dp[i] = make([]int, 5)
}
dp[0][0] = 0
dp[0][1] = -prices[0]
dp[0][2] = 0
dp[0][3] = -prices[0]
dp[0][4] = 0
for i := 1; i < len(prices); i++ {
dp[i][0] = dp[i-1][0]
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i])
dp[i][3] = max(dp[i-1][3], dp[i-1][2] - prices[i])
dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i])
}
return dp[len(prices)-1][4]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
// 买卖股票的最佳时机IV 动态规划
// 时间复杂度O(kn) 空间复杂度O(kn)
func maxProfit(k int, prices []int) int {
if k == 0 || len(prices) == 0 {
return 0
}
dp := make([][]int, len(prices))
status := make([]int, (2 * k + 1) * len(prices))
for i := range dp {
dp[i] = status[:2 * k + 1]
status = status[2 * k + 1:]
}
for j := 1; j < 2 * k; j += 2 {
dp[0][j] = -prices[0]
}
for i := 1; i < len(prices); i++ {
for j := 0; j < 2 * k; j += 2 {
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i])
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i])
}
}
return dp[len(prices) - 1][2 * k]
}
func max(a, b int) int {
if a > b {
return a
}
return b
}