特征值与特征向量是线性代数的重要内容,它的主要应用有:求矩阵的幂、矩阵的对角化、二次型的标准型。
在一个多项式中,未知数的个数为任意多个,且每一项的次数都是 2 的多项式称为二次型,其有两种类型:非标准二次型和标准二次型。
什么是标准和非标准呢?我们看两个例子。
f ( x 1 , x 2 , x 3 ) = 2 x 1 2 − x 2 2 + 3 x 3 2 + 2 x 1 x 2 − 4 x 2 x 3 f(x_1,x_2,x_3)=2x_1^2-x_2^2+3x_3^2+2x_1x_2-4x_2x_3 f(x1,x2,x3)=2x12−x22+3x32+2x1x2−4x2x3 为非标准二次型,而 g ( x 1 , x 2 , x 3 ) = 2 x 1 2 − x 2 2 + 3 x 3 2 g(x_1,x_2,x_3)=2x_1^2-x_2^2+3x_3^2 g(x1,x2,x3)=2x12−x22+3x32 为标准二次型。多项式 f f f 尽管每项也都是 2 次,但含有杂项,所以不是标准型。
将 f f f 进行矩阵化,即将其写成几个矩阵相乘的形式,有 f = X T A X f=X^TAX f=XTAX ,其中 A = [ 2 1 0 1 − 1 − 2 0 − 2 3 ] , X = [ x 1 x 2 x 3 ] . A=\begin{bmatrix} 2 & 1 & 0\\ 1 & -1 & -2 \\0 & -2 & 3 \end{bmatrix},X=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}. A= 2101−1−20−23 ,X= x1x2x3 . 同理,可以将 g g g 进行矩阵化,有 g = X T A X g=X^TAX g=XTAX ,其中 A = [ 2 0 0 0 1 0 0 0 − 3 ] , X = [ x 1 x 2 x 3 ] . A=\begin{bmatrix} 2 & 0 & 0\\ 0 & 1 & 0 \\0 & 0 & -3 \end{bmatrix},X=\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}. A= 20001000−3 ,X= x1x2x3 . 从中,我们有以下结论:
特征值与特征向量 —— 设 A A A 为 n n n 阶矩阵,若存在常数 λ \lambda λ 及 n n n 维非零列向量 α \pmb{\alpha} α ,使得 A α = λ α A\pmb{\alpha}=\lambda\pmb{\alpha} Aα=λα 称 λ \lambda λ 为矩阵 A A A 的特征值, α \pmb{\alpha} α 为矩阵 A A A 的属于特征值 λ \lambda λ 的特征向量。
A α = λ α A\pmb{\alpha}=\lambda\pmb{\alpha} Aα=λα 等价与 ( λ E − A ) α = 0 (\lambda E-A)\pmb{\alpha}=0 (λE−A)α=0 ,由 α \pmb{\alpha} α 为非零向量,得到方程组 ( λ E − A ) X = 0 (\lambda E-A)X=0 (λE−A)X=0 有非零解。根据前面方程组的知识,齐次方程组有非零解,等价于系数矩阵非满秩,即 r ( λ E − A ) < n r(\lambda E-A)
若 λ \lambda λ 为矩阵 A A A 的特征值,那么一定有 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 ∣λE−A∣=0 ;反之,若 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 ∣λE−A∣=0 ,则齐次线性方程组 ( λ E − A ) X = 0 (\lambda E-A)X=0 (λE−A)X=0 有非零解,从而存在非零向量 α \pmb{\alpha} α ,使得 ( λ E − A ) α = 0 (\lambda E-A)\pmb{\alpha}=0 (λE−A)α=0 ,即 A α = λ α A\pmb{\alpha}=\lambda\pmb{\alpha} Aα=λα ,故 λ \lambda λ 为矩阵 A A A 的特征值。
特征方程 —— 设 A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] A=\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} A= a11a21⋮an1a12a22⋮an2⋯⋯⋯a1na2n⋮ann ,称 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 ∣λE−A∣=0 为矩阵 A A A 的特征方程。
对角线元素之和,即 a 11 + a 22 + ⋯ + a n n a_{11}+a_{22}+\cdots+a_{nn} a11+a22+⋯+ann 称为矩阵 A A A 的迹,记作 t r ( A ) tr(A) tr(A) 。
矩阵相似 —— 设 A , B A,B A,B 为 n n n 阶矩阵,若存在可逆矩阵 P P P ,使得 P − 1 A P = B P^{-1}AP=B P−1AP=B ,称矩阵 A A A 和矩阵 B B B 相似,记为 A ∼ B A\sim B A∼B 。若存在可逆矩阵 P P P ,使得 P − 1 A P = Λ P^{-1}AP=\Lambda P−1AP=Λ ,其中 Λ \Lambda Λ 为对角矩阵,则称 A A A 可以相似对角化。
一个矩阵和本身是相似的;若 A ∼ B A \sim B A∼B ,则有 B ∼ A B\sim A B∼A ,且相似具有传递性。
令 f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 f(x)=anxn+an−1xn−1+⋯+a1x+a0 ,若 A ∼ B A \sim B A∼B ,有 A T ∼ B T , f ( A ) ∼ f ( B ) . A^T \sim B^T,f(A) \sim f(B). AT∼BT,f(A)∼f(B). 特别地,当 A , B A,B A,B 可逆时,有 A − 1 ∼ B − 1 , A ∗ ∼ B ∗ . A^{-1} \sim B^{-1},A^* \sim B^*. A−1∼B−1,A∗∼B∗.
若 A ∼ B A \sim B A∼B ,则有 r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B) ,但反过来不一定成立。即秩相等是相似的必要条件,若两个矩阵秩不相等,肯定不相似。
若 A ∼ B A \sim B A∼B ,则有 ∣ λ E − A ∣ = ∣ λ E − B ∣ |\lambda E-A|=|\lambda E-B| ∣λE−A∣=∣λE−B∣ ,从而 A , B A,B A,B 的特征值相同,但反过来不一定成立。
若 A ∼ B A \sim B A∼B ,有 ∣ A ∣ = ∣ B ∣ , t r ( A ) = t r ( B ) . |A|=|B|,tr(A)=tr(B). ∣A∣=∣B∣,tr(A)=tr(B).
施密特正交化 —— 把一组线性无关的向量组转化为一组两两正交且规范的向量组的过程称为施密特正交化。
设 α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,⋯,αn 线性无关,其正交化过程如下:
(1)正交化:
令 β 1 = α 1 , β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 , ⋯ , \pmb{\beta_1=\alpha_1,\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1,\cdots,} β1=α1,β2=α2−(β1,β1)(α2,β1)β1,⋯, β n = α n − ( α n , β 1 ) ( β 1 , β 1 ) β 1 − ( α n , β 2 ) ( β 2 , β 2 ) β 2 − ⋯ − ( α n , β n − 1 ) ( β n − 1 , β n − 1 ) β n − 1 . \pmb{\beta_n=\alpha_n-\frac{(\alpha_n,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_n,\beta_2)}{(\beta_2,\beta_2)}\beta_2-\cdots-\frac{(\alpha_n,\beta_{n-1})}{(\beta_{n-1},\beta_{n-1})}\beta_{n-1}}. βn=αn−(β1,β1)(αn,β1)β1−(β2,β2)(αn,β2)β2−⋯−(βn−1,βn−1)(αn,βn−1)βn−1. 则向量组 β 1 , β 2 , ⋯ , β n \pmb{\beta_1,\beta_2,\cdots,\beta_n} β1,β2,⋯,βn 两两正交。
(2)规范化:
令 γ 1 = β 1 / ∣ β 1 ∣ , γ 1 = β 2 / ∣ β 2 ∣ , ⋯ , γ n = β n / ∣ β n ∣ . \pmb{\gamma_1=\beta_1/|\beta_1|,\gamma_1=\beta_2/|\beta_2|,\cdots,\gamma_n=\beta_n/|\beta_n|.} γ1=β1/∣β1∣,γ1=β2/∣β2∣,⋯,γn=βn/∣βn∣. ,则向量组 γ 1 , γ 2 , ⋯ , γ n \pmb{\gamma_1,\gamma_2,\cdots,\gamma_n} γ1,γ2,⋯,γn 为两两正交且规范的向量组。
正交矩阵 —— 设 Q Q Q 为 n n n 阶矩阵,若 Q T Q = E Q^TQ=E QTQ=E ,称 Q Q Q 为正交矩阵。
显然, Q Q Q 可逆,且 Q − 1 = Q T Q^{-1}=Q^T Q−1=QT 。
设 Q = ( γ 1 , γ 2 , ⋯ , γ n ) Q=(\pmb{\gamma_1,\gamma_2,\cdots,\gamma_n}) Q=(γ1,γ2,⋯,γn) ,矩阵 Q Q Q 为正交矩阵的充要条件是 γ 1 , γ 2 , ⋯ , γ n \pmb{\gamma_1,\gamma_2,\cdots,\gamma_n} γ1,γ2,⋯,γn 两两正交且规范。
若 Q Q Q 为正交矩阵,有 ∣ Q ∣ = ± 1 |Q|=\pm1 ∣Q∣=±1 ,根据定义式两边取行列式即可得到。
若 Q Q Q 为正交矩阵,则 Q Q Q 的特征值为 ± 1 \pm1 ±1 。
证明: 若 Q Q Q 为正交矩阵,根据定义,有 Q T Q = E Q^TQ=E QTQ=E 。设矩阵 Q Q Q 的属于特征值 λ \lambda λ 的特征向量为 α \alpha α ,则有 Q α = λ α Q\alpha=\lambda\alpha Qα=λα 。等式两边同时进行转置运算,有 α T Q T = λ α T \alpha^TQ^T=\lambda\alpha^T αTQT=λαT ,等式两边同时乘以 Q α Q\alpha Qα ,有 α T Q T Q ^ α = λ α T Q α ^ \alpha^T\widehat{Q^TQ}\alpha=\lambda\alpha^T\widehat{Q\alpha} αTQTQ α=λαTQα ,即 α T E α = λ α T λ α \alpha^TE\alpha=\lambda\alpha^T\lambda\alpha αTEα=λαTλα ,可得到 α T α = λ 2 α T α \alpha^T\alpha=\lambda^2\alpha^T\alpha αTα=λ2αTα 。由 α \alpha α 为特征向量,有 α ≠ 0 \alpha \ne 0 α=0 ,所以 λ 2 = 1 \lambda^2=1 λ2=1 ,原命题得证。
就先到这里吧,下一篇文章我们来学习特征值与特征向量的性质。