858. Prim算法求最小生成树 - AcWing题库
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。
由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过 1000010000。
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
6
可类比迪杰斯特拉算法,用一个数组标记节点是否属于T。每次从未标记的节点中选出d值最小的,把它的标记(新加入T),同时扫描所有边出边,更新另一个端点的d值,最后,最小生成树的权值总的和就是d[1]+d[2]+····+d[n]
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include