- 一元线性回归模型与最小二乘法
liuzx32
监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线
- Redis-py 实战指南:从安装到向量索引,Python 操作 Redis 全解析
佑瞻
数据库与知识图谱redispython数据库人工智能
在Python开发中,操作Redis数据库是很多场景下的刚需,而redis-py作为Redis官方推荐的Python客户端,更是我们绕不开的工具。但你是否在安装时踩过版本兼容的坑?是否在连接集群或配置TLS时犯过难?甚至想尝试向量索引却不知从何下手?今天我们就从基础到进阶,手把手带你玩转redis-py,让Python操作Redis变得简单又高效。一、redis-py安装:避坑指南首先,我们需要安
- Go-Redis × 向量检索实战用 HNSW 在 Redis 中索引与查询文本 Embedding(Hash & JSON 双版本)
Hello.Reader
数据库运维缓存技术golangredisembedding
1.场景与思路痛点:把“文本内容”转成向量后,如何在本地Redis里做近似向量搜索(KNN),而不依赖外部向量数据库?方案:利用HuggingFace模型sentence-transformers/all-MiniLM-L6-v2生成384维Float32向量;借助RediSearch的HNSW索引能力,在Hash或JSON文档里存储&查询向量;用go-redisv9的高阶API(FTCreate
- RabitQ 量化:既省内存又提性能
大禹智库
《向量数据库指南》《实战AI智能体》人工智能AI自动化大禹智库AI智能体向量数据库
突破高维向量内存瓶颈:MlivusCloudRaBitQ量化技术的工程实践与调优指南作为大禹智库高级研究员,拥有三十余年向量数据库与AI系统架构经验的我发现,在当今多模态AI落地的核心场景中,高维向量引发的内存资源消耗问题已成为制约系统规模化部署的“卡脖子”因素。特别是在大规模图像检索、个性化推荐系统和语义搜索引擎中,动辄数亿级别的向量数据需要实时处理,传统全精度索引方式会让内存资源消耗呈指数级增
- 面向向量检索的教育QA建模:九段日本文化研究所日本语学院的Prompt策略分析(6 / 500)
semantist@语校
语言学校Prompt模板集人工智能prompt数据集ai百度支持向量机开源
面向向量检索的教育QA建模:九段日本文化研究所日本语学院的Prompt策略分析(6/500)系列说明500所日本语言学校结构化建模实战,第6篇。每篇拆解1所学校在Prompt-QA系统中的建模策略,分享工程经验,本项目持续在HuggingFace上同步更新,欢迎AI工程师们关注。一.案例选择:为什么是九段日本语学院?在以中国学生为中心设计的语言学校数据建模中,我们往往默认为目标用户熟悉中文、学习节
- 【LlamaIndex核心组件指南 | 数据加载篇】从原始数据到向量的全链路深度解析
吴师兄大模型
现代大模型技术与应用llamaindexlangchain开发语言pythonpytorch人工智能大模型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- LangChain教程11:LangChain高效检索器最佳实践
Cachel wood
LLM和AIGClangchain
文章目录相似性搜索底层原理K-MeansHierarchicalNavigableSmallWorlds(HNSW)FAISSPineconeLance总结相似性搜索底层原理FAISS相似度匹配Pinecone索引检索Lance向量持久化存储总结相似性搜索(SimilaritySearch)既然我们知道了可以通过比较向量之间的距离来判断它们的相似度,那么如何将它应用到真实的场景中呢?如果想要在一个
- 支持向量回归(Support Vector Regression, SVR)详解
DuHz
回归数据挖掘人工智能信号处理算法数学建模机器学习
支持向量回归(SupportVectorRegression,SVR)详解支持向量回归(SupportVectorRegression,简称SVR)是一种基于支持向量机(SVM)的回归分析方法,广泛应用于预测和模式识别领域。SVR通过在高维空间中寻找一个最优超平面,以最大化数据点与超平面的间隔,从而实现对连续型变量的预测。本文将深入探讨SVR的理论基础、数学原理、模型构建、参数选择、训练与优化、应
- C++ 标准模板库(STL)详解文档
tt555555555555
C++学习算法题c++算法数据结构
C++标准模板库(STL)详解文档1前言2常用容器2.1内容总览2.2向量vector2.2.1概述2.2.2常用方法2.2.3适用场景2.2.4注意事项2.3栈stack2.3.1概述2.3.2常用方法2.3.3注意事项2.4队列queue2.4.1概述2.4.2常用方法2.4.3注意事项2.5优先队列priority\_queue2.5.1概述2.5.2常用方法2.5.3适用场景2.5.4注意
- XSS总结:跨站脚本(XSS)攻击向量(精)
墨痕诉清风
渗透常识研究xssjavascriptfirefox
alert(1)alert("xss")alert(9801)//url参数,加载元素//edit输入框插入//学SQL注入?其第一个1为正常参数1">alert(1)事件处理不需要用户交互的事件处理程序激活元素时触发(IE)页面打印后触发(Chrome、Firefox、IE)CSS动画取消时触发(Firefox)@keyframesx{from{left:0;}to{left:1000px;}}
- 线性代数小述(三)
天宫风子
线性代数决策树机器学习
线性代数小述(三)byAmamiyaFuko此去经年返,安知胡不归?前言FU⭐️KO首先需要对上一篇的线性组合的概念做一个更正,然后是考虑行列式相关的内容。目录1.线性组合2.行列式-行列式运算的定义-拉普拉斯展开线性组合线性组合是对一个向量的分解。考虑一个二维空间,若某一向量与两个向量在同在该空间中,且这两个向量是线性无关的(不平行的),则必然有这个向量对于后两个向量的线性组合表示,如Av1ˇ+
- 医疗AI与融合数据库的整合:挑战、架构与未来展望(上)
Allen_Lyb
数智化教程(第二期)人工智能数据库架构
引言随着人工智能(AI)在医疗健康领域的广泛应用,数据已成为医疗AI发展的核心驱动力。然而,医疗数据具有极度的异构性(包括结构化电子病历、医学影像向量、基因组JSON/图结构、传感器时序等),传统数据架构难以高效整合。因数据孤岛、复杂ETL流程以及昂贵维护成本,医疗AI平台通常难以充分发挥价值。融合数据库(ConvergedDatabase/多模态一体化数据库)通过支持SQL、JSON、图、向量、
- 相机内外参矩阵/Mono2Depth相机转换矩阵,位姿矩阵
初岘
矩阵线性代数机器人
Mono2Depth_Mat转换矩阵,代表了mono和depth的相对关系,depth有深度信息,3d空间;mono是2d图像,通过转换矩阵可以将3d空间投影到2d空间,也就是图像中的物体有了深度信息。物体在空间中的姿态可以理解为坐标+方向,一个向量(6个数),那么一个四维的转换矩阵参数是够用的。位姿矩阵(PoseMatrix):位姿矩阵描述了一个物体在3D空间中的位置和方向。它通常是一个4x4的
- 相机内外参知识
传说故事
数码相机相机参数相机
已知相机的内外参数矩阵,可以求得相机在世界坐标系下的原点坐标。这里需要理解几个概念:内参数矩阵(IntrinsicMatrix):描述相机本身的属性,比如焦距、主点位置等。外参数矩阵(ExtrinsicMatrix):描述相机相对于世界坐标系的位置和姿态。外参数矩阵通常由旋转矩阵RRR和平移向量ttt组成,它们一起描述了从世界坐标系到相机坐标系的转换。如果要计算相机原点在世界坐标系中的位置,则需要
- Python 机器学习:NumPy 实现朴素贝叶斯分类器
Python编程之道
Python编程之道python机器学习numpyai
Python机器学习:NumPy实现朴素贝叶斯分类器关键词:朴素贝叶斯分类器、NumPy、机器学习、概率模型、条件概率、拉普拉斯平滑、向量化计算摘要:本文系统讲解朴素贝叶斯分类器的核心原理,基于NumPy实现高效的算法框架,涵盖从概率理论到工程实现的完整流程。通过数学公式推导、代码实现和鸢尾花数据集实战,展示如何利用向量化计算优化概率估计,解决特征独立性假设下的分类问题。同时分析算法优缺点及实际应
- 医疗AI与融合数据库的整合:挑战、架构与未来展望(下)
Allen_Lyb
数智化教程(第二期)人工智能数据库架构
解决方案:引入融合数据库(Multi-modalDataFusionDB)医院引入一款支持图、向量、表、流的融合数据库(如OracleADW、Milvus+PostgreSQL、或某国产平台),完成了以下集成:数据类型来源系统格式/模型示例内容基因组数据NGS平台VCF/JSON/图EGFR突变、ALK融合等医学影像特征CT影像AI平台向量肿瘤体积、位置、边界清晰度等临床病历HIS/EMR结构化表
- 大模型核心概念 | 嵌入模型(Embedding)、向量模型(Vector Model)
一、核心概念解析1.1嵌入模型(Embedding)作为AI领域的核心基础技术,嵌入模型通过将非结构化数据映射为低维稠密向量,实现语义特征的深度捕捉:文本嵌入:如将语句转换为1536维向量,使"机器学习"与"深度学习"的向量余弦相似度达0.92跨模态嵌入:支持图像与文本的联合向量空间映射,如CLIP模型实现文图互搜1.2向量模型(VectorModel)作为嵌入技术的下游应用体系,主要包含两大方向
- 【V8.0 - 语言篇 II】AI的“文案扫描仪”:解剖脚本,量化内容的“灵魂骨架”
爱分享的飘哥
AI视频内容智能分析人工智能
在上一篇《AI的“标题嗅觉”:用向量技术闻出爆款标题的味道》中,我们成功地赋予了AI“嗅觉”,让它能理解标题的深层语义。但我们都知道,标题只是“开胃菜”,真正决定观众能否“吃”得津津有味,甚至“再来一碗”(点赞、关注)的,是那几百上千字的文案/脚本——这才是视频的“主菜”。“一篇好的文案,就像一栋精心设计的建筑。它有承重墙(核心观点),有漂亮的窗户(金句),有引导人流的楼梯(叙事结构),还有吸引人
- 【回溯法】n皇后问题 C/C++ (附代码)
haaaaaaarry
算法设计与分析c语言c++开发语言回溯法算法
问题描述在一个n*n的棋盘上放置彼此不受攻击的n个皇后,按照国际象棋规则,皇后可以攻击与其在同一行,同一列或者同一对角线的其他皇后,求合法摆放的方案数。问题分析通过递归和回溯的方法,逐行放置皇后,并在每一步检查当前位置是否安全。如果安全,则继续放置下一个皇后;如果不安全,则回溯到上一步,尝试其他位置。代码数据结构intx[]:存放解向量,即第i个皇后的位置intsum:记录解的个数#define_
- STL 简介(标准模板库)
前言通过对C++的特性,类和对象的学习和C++的内存管理对C++基本上有了全面的认识,但是C++的核心在于STL一、STL简介什么是STLC++STL(StandardTemplateLibrary,标准模板库)是C++编程语言中一个功能强大的模板库,它提供了一系列通用的数据结构和算法。STL的设计基于泛型编程,这意味着它使用模板来编写独立于任何特定数据类型的代码。STL的核心组件包括容器(如向量
- Paimon 删除向量
lifallen
Paimon数据库大数据java数据结构apache
RowKind可以标记删除,但它和DeletionVector(删除向量)是为解决不同场景下的问题而设计的两种机制,它们工作在不同的层面。简单来说:RowKind是“逻辑层”的变更指令,主要用于primary-key表的LSM-Tree合并过程。DeletionVector是“物理层”的读时过滤优化,用于在不重写数据文件的前提下,快速地“标记”某些行为无效,极大地提升了DELETE/UPDATE操
- Gcn符号笔记
happydog007
笔记python
KeyPoints邻接矩阵A通常表示无向图中结点之间的连接,尺寸为[N,N],其中N是结点的数量。度矩阵D是对角矩阵,尺寸为[N,N],对角元素表示每个结点的度。结点特征向量矩阵XXX的尺寸为[N,C],其中C是每个结点的特征数量,包含结点的额外属性,如年龄或文本特征。邻接矩阵A邻接矩阵A是一个方阵,用于表示图中结点之间的连接关系。对于无向图,A[i,j]=1A[i,j]=1A[i,j]=1表示结
- ColQwen-Omni:RAG全模态检索来了,支持【文本|图像|视频|音频】四种模态!
致Great
音视频
还记得ColPali、ColQwen和DSE吗?这些模型开创了视觉文档检索的新范式:无需费力地从文档中提取文本进行处理,只需将文档页面视为一系列图像(屏幕截图),然后训练视觉语言模型(VLM)直接将其内容表示为向量。ColPali的实践表明,这种策略通常比其他替代方法更快、更简单,并且能带来更好的检索性能。自发布一年以来,ColPali和ColQwen系列模型已被下载数百万次,被誉为“2024年顶
- 全局 WAF 规则:构筑 Web 安全的坚固防线
2501_91022519
安全网络
定义:全局WAF(Web应用防火墙)规则是指在WAF系统中对所有受保护的Web应用或整个网络环境生效的通用防护策略,旨在覆盖常见的Web攻击向量、合规要求及基础安全基线,减少重复配置并确保整体防护的一致性。配置原则:最小权限:仅允许必要的请求行为(如默认阻断所有不常见HTTP方法),减少攻击面。动态更新:定期根据新漏洞(如Log4j、Spring漏洞)、攻击趋势更新规则库(如新增对特定EXP的检测
- LangChain中的向量数据库接口-Weaviate
洪城叮当
langchain数据库经验分享笔记交互人工智能知识图谱
文章目录前言一、原型定义二、代码解析1、add_texts方法1.1、应用样例2、from_texts方法2.1、应用样例3、similarity_search方法3.1、应用样例三、项目应用1、安装依赖2、引入依赖3、创建对象4、添加数据5、查询数据总结前言 Weaviate是一个开源的向量数据库,支持存储来自各类机器学习模型的数据对象和向量嵌入,并能无缝扩展至数十亿数据对象。它提供存储文档嵌
- 深度学习模型表征提取全解析
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython深度学习人工智能pythonembedding语言模型
模型内部进行表征提取的方法在自然语言处理(NLP)中,“表征(Representation)”指将文本(词、短语、句子、文档等)转化为计算机可理解的数值形式(如向量、矩阵),核心目标是捕捉语言的语义、语法、上下文依赖等信息。自然语言表征技术可按“静态/动态”“有无上下文”“是否融入知识”等维度划分一、传统静态表征(无上下文,词级为主)这类方法为每个词分配固定向量,不考虑其在具体语境中的含义(无法解
- LLM的表征做减法的是什么,自然语言是一个矩阵,怎么进行减法的
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython计算机视觉人工智能机器学习算法深度学习
LLM的表征做减法的是什么,自然语言是一个矩阵,怎么进行减法的有个假设:就是最后一个词语融合了前面词语的信息减法操作主要用于提取模型内部表征中的"诚实性"概念向量。具体来说,这是通过对比诚实和不诚实场景下的模型隐藏状态实现的。importtorchfromtransformersimportAutoModelForCausalLM,AutoTokenizer,AutoConfigimportnum
- NumPy-@运算符详解
GG不是gg
numpynumpy
NumPy-@运算符详解一、@运算符的起源与设计目标1.从数学到代码:符号的统一2.设计目标二、@运算符的核心语法与运算规则1.基础用法:二维矩阵乘法2.一维向量的矩阵语义3.高维数组:批次矩阵运算4.广播机制:灵活的形状匹配三、@运算符与其他乘法方式的核心区别1.对比`np.dot()`2.对比元素级乘法`*`3.对比`np.matrix`的`*`运算符四、典型应用场景:从基础到高阶1.深度学习
- 任鸟飞FPS类型游戏绘制,骨骼,u3d,UE4和游戏安全,反外挂研究 (三)
任鸟飞逆向~
FPSC语言网络安全3d游戏ue4
书接上文,我们非矩阵的方式绘制是没有那么的精确的在学习矩阵之前,我们先来了解下绘制的几种方法绘制的几种方法和反外挂建议第一种hookd3d/opengl优点:不闪,代码简单缺点:非常容易被检测第二种窗口上自行绘制,但是会闪优缺点适中第三种自建透明窗口,覆盖游戏窗口,透明窗口上绘制优点:稳定确定:代码复杂,会闪反外挂:无非就是针对外挂使用的函数进行检测深入学习矩阵对象的世界坐标列向量xyzw(w为了
- 资源分享-FPS, 矩阵, 骨骼, 绘制, 自瞄, U3D, UE4逆向辅助实战视频教程
小零羊
矩阵3due4
文章底部获取资源教程概述本视频教程专为游戏开发者和安全研究人员设计,涵盖FPS游戏设计、矩阵运算、骨骼绘制、自瞄算法、U3D和UE4逆向辅助等实战内容。通过102节详细视频教程,您将掌握从基础到高级的游戏开发与安全防护技能。教程内容1.FPS类型游戏的设计研究和游戏安全,反外挂研究2.二维向量和平面距离3.atan2和tan4.三维向量和空间距离5.补充向量乘法6.矩阵和矩阵的运算7.矩阵的特性8
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb