- 使用Apollo Cyber RT Python API处理图像消息
Hi20240217
代码片段学习python开发语言apollocyberrt自动驾驶‘
使用ApolloCyberRTPythonAPI处理图像消息背景介绍一、提取record中的图像为什么需要提取图像?操作步骤关键点解释:执行命令:二、发布图像消息为什么需要发布消息?实现代码:核心组件:三、订阅图像消息订阅的意义:订阅者实现:关键技术点:四、实际应用场景五、调试技巧背景介绍在自动驾驶系统中,传感器数据(如图像)通常以记录文件(record)的形式保存。ApolloCyberRT作为
- SpringBoot电商项目实战:从零搭建百万级架构
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人SpringBoot电商项目实战:从
- leetcode 3304. 找出第 K 个字符 I 简单
圣保罗的大教堂
leetcode字符串leetcode
Alice和Bob正在玩一个游戏。最初,Alice有一个字符串word="a"。给定一个正整数k。现在Bob会要求Alice执行以下操作无限次:将word中的每个字符更改为英文字母表中的下一个字符来生成一个新字符串,并将其追加到原始的word。例如,对"c"进行操作生成"cd",对"zb"进行操作生成"zbac"。在执行足够多的操作后,word中至少存在k个字符,此时返回word中第k个字符的值。
- LeetCode643. 子数组最大平均数 I
题目分析本题要求找出一个长度为k的连续子数组,使其平均值最大。由于平均值由子数组和决定,问题转化为寻找最大子数组和(再除以k)。解题思路滑动窗口技巧:先计算第一个窗口(0到k-1)的元素和。将窗口向右滑动(每次移动一位):减去窗口左侧离开的元素加上窗口右侧新增的元素在滑动过程中记录窗口和的最大值。数学优化:平均值=窗口和/k最大化平均值⇨最大化窗口和最终结果=最大窗口和÷k(注意转换为double
- CCNA 网络基础知识最新PPT课程
本文还有配套的精品资源,点击获取简介:CCNA课程涵盖了网络基础的各个方面,包含OSI模型、TCP/IP协议、路由协议、VLAN以及思科设备配置等内容。本套PPT资源旨在帮助学习者全面理解网络通信的运作,从OSI的七层模型到TCP/IP协议簇,再到路由协议的选择与配置,以及VLAN技术的实现与管理,学习者能够逐步掌握网络技术,为通过CCNA认证或解决实际网络问题打下坚实基础。1.OSI模型全面介绍
- Java简易爬虫:抓取京东图书信息实战指南
黃昱儒
本文还有配套的精品资源,点击获取简介:本项目展示如何使用Java语言创建一个网络爬虫来抓取京东网站的图书信息。介绍使用Maven作为构建工具,HTTP客户端库发送请求,以及Jsoup或类似库解析HTML内容。讲解如何处理JavaScript动态加载内容,绕过反爬机制,并讨论数据存储和用户界面设计的策略。1.Java网络爬虫项目概述网络爬虫是一种自动获取网页内容的程序,它按照一定的规则,自动抓取互联
- arp miss攻击_ARP配置教程(一)
黃昱儒
arpmiss攻击
一、防ARP泛洪攻击当针对全局、VLAN、接口的ARP报文限速以及根据源MAC地址、源IP地址进行ARP报文限速中的多个限速功能同时配置时,设备对同时满足这些限速条件的ARP报文以其中最小的限速值进行限速。当针对全局、VLAN、接口的ARPMiss消息限速以及根据源IP地址进行ARPMiss消息限速中的多个限速功能同时配置时,设备对同时满足这些限速条件的ARPMiss消息以其中最小的限速值进行限速
- ConvNeXT:面向 2020 年代的卷积神经网络
摘要视觉识别的“咆哮二十年代”始于VisionTransformer(ViT)的引入,ViT很快取代了ConvNet,成为图像分类任务中的最新最强模型。然而,vanillaViT在应用于目标检测、语义分割等通用计算机视觉任务时面临困难。HierarchicalTransformer(如SwinTransformer)重新引入了若干ConvNet的先验知识,使Transformer成为实用的通用视觉
- 企业级云原生平台的演进路径与治理框架
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注一、背景:从“项目型IT”到“平台型能力”的战略转型企业在数字化进程中正面临从“项目交付”向“平台支撑”的深层转型。传统项目型IT架构以“一次性交付”为目标,缺乏后续演进能力,而平台化思维强调“能力复用、持续运营、面向组织协同”,使得云原生平台不仅成为基础设施的新形态,更是企业核心竞争力的构建载体。云原生带来的不仅仅是技术革命,更是组织边界、协作
- AI代码生成与测试体系建设的关键要素
关键词:AI代码生成、自动化测试、软件质量保障、持续集成、智能测试文章目录1.引言:AI编程时代的"双刃剑"2.AI代码生成的核心组件2.1智能代码生成引擎2.2上下文理解与意图识别2.3代码质量评估机制3.测试体系的四大支柱3.1自动化测试生成3.2智能测试用例设计3.3代码覆盖率分析3.4性能与安全测试4.系统架构设计要点4.1整体架构蓝图4.2数据流与处理管道4.3反馈循环机制5.质量保障与
- AIOps助力AI研发平台的自我优化能力构建
TechVision大咖圈
人工智能AIOps能力构建
关键词:AIOps在AI研发平台中的自我优化能力构建适用读者:AI平台架构师、研发效能团队、智能运维工程师阅读时长:约8分钟目录什么是AIOps?AI研发平台的挑战AIOps如何赋能AI研发平台自我优化能力的核心构建要素架构图与流程示意最佳实践案例写在最后什么是AIOps?AIOps,全称ArtificialIntelligenceforITOperations。别害怕这个“高大上”的名词,其实它
- 所有自动化 EDA 库,尽在一家。
krishnaik06
pandasscikit-learnpythonmatplotlib
自动化探索性数据分析(EDA)库详解这篇文章介绍了各种自动化探索性数据分析(EDA)库,帮助数据科学家快速高效地进行数据探索。文章重点介绍了detail库,并展示了如何使用它来分析泰坦尼克号数据集。文章主要内容:EDA的重要性:EDA通常占数据科学项目30%的时间,因此使用自动化工具可以节省大量时间。detail库介绍:detail库可以快速生成直观的图表,帮助用户了解数据的分布、关系等信息。安装
- ZED相机与Foxglove集成:加速机器人视觉调试效率的实用方案
随着机器人技术的发展,实时视觉数据流的高效传输和可视化成为提升系统性能的重要因素。通过ZED相机(包括ZED2i和ZEDX)与FoxgloveStudio平台的结合,开发者能够轻松访问高质量的2D图像、深度图和点云数据,从而显著提高感知系统的调试效率。实时可视化价值数据监控ZED相机与Foxglove的集成使得开发者可以在Foxglove平台上查看高分辨率的2D图像、深度图和点云数据。这种能力让团
- windbg使用教程(调试异常及死锁等)
哈市雪花
调试windbgDMP异常死锁windows调试
1.背景最近由于线上的程序发生了死锁,而且重现的概率很低,正好客户反馈一个任务超时了,登上线上环境发现有一个“僵尸”进程,占用内存不波动,cpu仍在占用,那么用创建转储文件,用windbg调试吧。2.准备2.1.下载windbg需要下载Windows调试工具(WinDbg):Windows10SDK,安装时候根据需要,可以只安装DebuggingToolsForWindows,即windbg;如果
- AABB包围盒和OBB包围盒区别
哈市雪花
图形学AABBOBB包围盒图形学boundingbox
1.问题图形学中经常出现AABB包围盒、OBB包围盒、包围球等,这些概念初次接触时有点容易混淆;2.概念AABB:Axis-AlignedBoundingBox,轴对齐包围盒;OBB:OrientedBoundingBox,有向包围盒;包围球:外接球;OBB比包围球和AABB更加逼近物体,能显著减少包围体的个数3.其他类似的概念还有凸包、最小外接轮廓等,有兴趣的可以查阅相关资料。
- 如何为工业相机匹配最佳镜头
51camera
机器视觉产品资料查询平台工业相机工业镜头工业相机
工业镜头选型为什么重要?工业镜头与普通相机镜头不同,它的核心任务是满足高精度、稳定性、环境适应性等严苛需求。选型不当可能导致:成像模糊:影响缺陷检测或尺寸测量精度;成本浪费:高价镜头无法适配实际场景;系统卡顿:镜头与相机、光源不匹配,拖慢处理速度。选型要精准匹配需求。在工业自动化、机器视觉、智能检测等领域,工业镜头作为工业相机的“眼睛”起着重要作用,选择合适的镜头才能让成像更精准、高效。那么如
- Spinnaker 4 SDK助力扩展多工业相机成像系统
51camera
工业相机机器视觉产品资料查询平台工业相机
扩展多相机成像系统是系统集成商和机器制造商面临的一项技术挑战。网络拥堵、CPU过载、同步错误以及配置复杂性等问题常常会给成功构建包含大量GigE相机的系统造成诸多阻碍。最近,Teledyne通过交换机将40多台GigE相机连接到一台PC,成功运行了相机系统。即使在极限压力下,系统依然连续运行了数天,期间没有出现帧丢失或错误。这一成就得益于Spinnaker4SDK,它基于TeledyneGigE框
- 看不见的光,看得见的细节:短波红外工业相机的神秘力量!
51camera
工业相机短波红外相机
随着市场需求的挖掘和机器视觉技术的发展,短波红外工业相机在工业、医疗、食品等领域的应用越来越广泛。其中半导体检测和食品检测是两大主要应用市场,占据较大的市场份额。今天我们来看看短波红外相机。短波红外(Short-WaveInfrared简称SWIR,通常指0.9~1.7μm波长的光线)是一种比可见光波长更长的光。这些光不能通过“肉眼”看到,也不能用“普通相机”检测到。由于被检测物体的材料特性,一些
- Python Amazon Web Services编程库之boto3使用详解
Rocky006
python开发语言人工智能
概要boto3是AmazonWebServices(AWS)的官方Python软件开发工具包(SDK),为开发者提供了从Python应用程序访问和管理AWS服务的简单方式。作为AWS生态系统的重要组成部分,boto3提供了对AmazonS3、EC2、DynamoDB等几乎所有AWS服务的编程访问。该库采用面向对象的API设计,不仅使基本操作变得直观,还支持高级功能如资源抽象、数据分页和并发操作。安
- 扫描电镜能谱分析入门:扫描电镜不仅能看,还能“查成分”
扫描电镜
扫描电镜扫描电子显微镜科研扫描电镜推荐
扫描电镜能谱分析入门:扫描电镜不仅能看,还能“查成分”掌握EDS,从一张黑白图到微观化学地图的跃迁引言:黑白图像之外,还有哪些信息?在扫描电子显微镜(SEM)中,你或许已经熟悉了放大图像的纹理与结构。但仅靠形貌还不够,我们还需要知道:这是什么材料?都有哪些元素?分布在哪里?这就是能谱分析(EDS)登场的时刻。配合SEM,EDS让我们从“看图”进入“读谱”的阶段,打通形貌与成分之间的桥梁,是现代微纳
- GPT在AI原生应用领域的无限潜力
GPT在AI原生应用领域的无限潜力关键词:GPT、AI原生应用、自然语言处理、无限潜力、应用场景摘要:本文深入探讨了GPT在AI原生应用领域所展现出的无限潜力。首先介绍了相关背景知识,包括GPT的基本概念和AI原生应用的定义。接着详细解释了GPT的核心概念,以及它与AI原生应用的紧密联系。通过数学模型和公式对GPT的工作原理进行了阐述,并给出了实际的代码案例。还探讨了GPT在多个实际应用场景中的表
- 40 岁想学中医怎么开始?过来人的经验分享 问止精一书院
2501_92067291
问止中医
零基础学中医学中医如何入门免费学中医!问止精一书院链接:https://tool.nineya.com/qrcode/1iv54b4ts不少人到了40岁,对中医产生浓厚兴趣,却不知该如何起步。作为一名从40岁开始学中医的过来人,我想分享一些实用经验,尤其推荐以问止中医的免费课程作为入门跳板。40岁学中医,最大的顾虑往往是“零基础怕跟不上”。问止中医的免费报名课程恰好解决了这个痛点,课程专为中医小白
- 人工智能赋能气象气候:从数据智能到预测创新的融合之路
慌ZHANG
人工智能人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:气象气候与AI的“天然耦合”气象与气候系统是典型的复杂、多尺度、强非线性的自然系统,其建模、分析与预测依赖庞大观测数据和高性能计算资源。传统方法以数值天气预报(NWP)与物理建模为核心,虽然取得重要成就,但也面临计算代价大、精度不足、长期预测偏差大等瓶颈。与此同时,人工智能(AI),尤其是以深度学习为代表的机器学习方法,近年来在图像识别、自
- 【机器学习|学习笔记】类别特征(Categorical Features)处理方法,附代码。
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记神经网络人工智能深度学习
【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。文章目录【机器学习|学习笔记】类别特征(CategoricalFeatures)处理方法,附代码。前言✅为什么要处理类别特征?原因1:大多数模型不能处理字符串原因2:避免“错误的顺序假设”原因3:方便模型泛化与特征交互✅
- stm32达到什么程度叫精通?
STM32达到什么程度叫精通?一个十年老兵的深度反思前言:精通二字,重如泰山每次有人问我"STM32达到什么程度叫精通"这个问题,我都会沉默很久。不是因为这个问题难回答,而是因为"精通"这两个字太重了。重到让我这个在嵌入式领域摸爬滚打了近十年的老兵,都不敢轻易说出口。2014年,我刚从机械专业毕业,怀着忐忑不安的心情走进厦门某马的大门。那时候的我,连STM32是什么都不知道,更别说什么精通了。现在
- 【赵渝强老师】Oracle RMAN的目录数据库
数据库oraclerman
在默认情况下,OracleRMAN将备份时产生的元信息保存到控制文件中。RMAN在执行恢复时,就需要读取控制文件,从而找到备份的信息来完成数据库的恢复。因此,如果控制文件发生了丢失和损坏将导致数据库无法执行恢复。另一方面随着备份的不断增多,也会导致控制文件的大小无限增长。为了更好地管理RMAN备份的元信息,Oracle可以使用一个专门的备份信息存储地来存储这些信息,这就是RMAN的目录数据库(Ca
- Python中使用Graphviz绘制决策树图解
黃昱儒
本文还有配套的精品资源,点击获取简介:Graphviz是一款用于数据可视化和算法流程展示的图形绘制软件,特别适用于Python中绘制决策树和其他图形类型。本安装包包含Graphviz安装程序和配置指南,以及如何在Python中利用pydot库等第三方库进行图形绘制的详细步骤。通过配置环境变量和利用DOT语言,用户可以将决策树模型转换为可视化图形,加深对机器学习模型的理解和调试。1.Graphviz
- PHP+Web进销存管理系统源码部署教程:快速搭建企业级ERP软件
typescript
在数字化转型浪潮下,企业对高效管理进销存流程的需求愈发迫切。基于PHP+Web的进销存管理系统,凭借其开源性、灵活性和跨平台优势,成为众多企业搭建ERP软件的首选方案。本文将详细介绍该系统源码的部署流程,助你快速搭建适合企业需求的ERP软件。进销存源码及展示:c.csymzs.top一、部署前的准备工作(一)服务器环境准备1.服务器类型云服务器(推荐):阿里云ECS、腾讯云CVM、AWSEC2:支
- 【第三章】摄影测量学
啊有礼貌
测绘学概论数码相机摄影测量倾斜测量空中三角测量
概述摄影测量概念:通过摄影的手段获得对物体可靠量测的科学与技术利用立体像对影像之间的移位构建立体模型,进行测量由二维影像到三维实体的科学技术重要方法:利用立体像对与一对浮动测标进行立体观测,测定同名点点云表示三维空间中点的集合的数据结构,包含三维坐标、有时还包含颜色信息、强度信息、法线向量等具有高密度、无序性、多维度、灵活性左右视差较/横视差较:在立体像对上,某点的左右视差相对于作为基准点像点的左
- Python工程师面试题集
木鱼时刻
软件开发python开发语言
文章目录一、Python基础二、关键Python库三、Web开发四、并发与性能五、系统设计答案区一、Python基础Python的可变与不可变数据类型有哪些?底层实现原理?Python2与Python3的主要区别解释GIL全局解释器锁及其对多线程的影响装饰器Decorator的作用与实现原理二、关键Python库Pandas的核心作用及数据结构常用Pandas操作与缺失值处理百万级数据优化技巧Nu
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>