3:django models Making queries 高级进阶--聚合运算

在前一遍文章django models Making queries里面我们提到了django常用的一些检索数据库的内容,

下面我们来看一下更为高级的检索聚合运算

这是我们要用到的模型

class Author(models.Model):

   name = models.CharField(max_length=100)

   age = models.IntegerField()

   friends = models.ManyToManyField('self', blank=True)



class Publisher(models.Model):

   name = models.CharField(max_length=300)

   num_awards = models.IntegerField()



class Book(models.Model):

   isbn = models.CharField(max_length=9)

   name = models.CharField(max_length=300)

   pages = models.IntegerField()

   price = models.DecimalField(max_digits=10, decimal_places=2)

   rating = models.FloatField()

   authors = models.ManyToManyField(Author)

   publisher = models.ForeignKey(Publisher)

   pubdate = models.DateField()



class Store(models.Model):

   name = models.CharField(max_length=300)

   books = models.ManyToManyField(Book)

 

我们直接来看一些高级聚合运算的例子吧

# Total number of books.

>>> Book.objects.count()

2452



# Total number of books with publisher=BaloneyPress

>>> Book.objects.filter(publisher__name='BaloneyPress').count()

73



# Average price across all books.

>>> from django.db.models import Avg

>>> Book.objects.all().aggregate(Avg('price'))

{'price__avg': 34.35}



# Max price across all books.

>>> from django.db.models import Max

>>> Book.objects.all().aggregate(Max('price'))

{'price__max': Decimal('81.20')}



# Each publisher, each with a count of books as a "num_books" attribute.

>>> from django.db.models import Count

>>> pubs = Publisher.objects.annotate(num_books=Count('book'))

>>> pubs

[<Publisher BaloneyPress>, <Publisher SalamiPress>, ...]

>>> pubs[0].num_books

73



# The top 5 publishers, in order by number of books.

>>> from django.db.models import Count

>>> pubs = Publisher.objects.annotate(num_books=Count('book')).order_by('-num_books')[:5]

>>> pubs[0].num_books

1323

 

aggregate(英文原意:a sum total of many heterogenous things taken together,中文释义:合计;集合体;总计)

annotate(英文原意:add explanatory notes to or supply with critical comments,中文释义:注释;给…作注释或评注)

结合上面给出的例子,我们似乎可以这样总结吧

aggregate是对我们我们感兴趣的某一列进行一些操作,返回的是一个字典

annotate是返回的是一个queryset,并且这个queryset有着我们需要的额外字段

继续看一些annotate的例子吧

# Build an annotated queryset

>>> q = Book.objects.annotate(Count('authors'))

# Interrogate the first object in the queryset

>>> q[0]

<Book: The Definitive Guide to Django>

>>> q[0].authors__count

2

# Interrogate the second object in the queryset

>>> q[1]

<Book: Practical Django Projects>

>>> q[1].authors__count

1

 

接下来我们来进行更高级的操作吧

1:找出每间store的价格范围,很明显,如果你想要范围的结果包含store,你应该用annotate

>>> Store.objects.annotate(min_price=Min('books__price'), max_price=Max('books__price'))

 

如果你只是想得出所有store的价格范围,你应该用aggregate

 Store.objects.aggregate(min_price=Min('books__price'), max_price=Max('books__price'))

 

分组查询values()

使用values()可以在查询前后给数据分组

最后我们说几个关于查询顺序的例子

1:annotate和values的顺序

>>> Author.objects.values('name').annotate(average_rating=Avg('book__rating'))

>>> Author.objects.annotate(average_rating=Avg('book__rating')).values('name', 'average_rating')

 

第一行的查询时先对作者分组(相同名字的作者的书会被归在一组),返回每个作者的平均排名

第二行的查询会为每个作者生成一个average_rating,而且只会输出每个author的name和average_rating

2:filter和annotate的顺序

>>> Publisher.objects.annotate(num_books=Count('book')).filter(book__rating__gt=3.0)

>>> Publisher.objects.filter(book__rating__gt=3.0).annotate(num_books=Count('book'))

 

两个查询都返回了至少出版了一本好书(评分大于3分)的出版商的列表。

但是第一个查询的注解包含其该出版商发行的所有图书的总数;

而第二个查询的注解只包含出版过好书的出版商的所发行的好书(评分大于3分)总数。

在第一个查询中,注解在过滤器之前,所以过滤器对注解没有影响。在第二个查询中,过滤器在注解之前,所以,在计算注解值时,过滤器就限制了参与运算的对象的范围

 

你可能感兴趣的:(django)