LeakCanary是一个非常受欢迎的android内存泄漏检测工具,只需要在项目中引入即可
debugImplementation 'com.squareup.leakcanary:leakcanary-android:2.5'
然后 没有什么 初始化,注册 之类的任何操作,就OK了。
很是奇怪,下面从 LeakCanary 如何启动调用和工作原理做一下 简单的总结分析;
LeakCanary如何启动调用
既然LeakCanary,没有任何初始化的代码调用,LeakCanary 就有可能在AndroidManifest清单文件中 声明了ContentProvider,借助ContentProvider的特性来实现初始化;
先看一下 debug.apk中的 清单文件内容:
果然如此,LeakCanary的aar中 已经声明了这个 AppWatcherInstaller 对象,所以就不需要在app中的AndroidManifest中 再次声明了;
/**
* Content providers are loaded before the application class is created. [AppWatcherInstaller] is
* used to install [leakcanary.AppWatcher] on application start.
*/
internal sealed class AppWatcherInstaller : ContentProvider() {
/**
* [MainProcess] automatically sets up the LeakCanary code that runs in the main app process.
*/
internal class MainProcess : AppWatcherInstaller()
/**
* When using the `leakcanary-android-process` artifact instead of `leakcanary-android`,
* [LeakCanaryProcess] automatically sets up the LeakCanary code
*/
internal class LeakCanaryProcess : AppWatcherInstaller()
override fun onCreate(): Boolean {
val application = context!!.applicationContext as Application
AppWatcher.manualInstall(application)
return true
}
...
看一下 自定义的AppWatcherInstaller 内容提供者的代码。
自定义的AppWatcherInstaller 对象,会在Application调用onCreate方法之前,创建并调用其自身的onCraete方法;
而且注释中 已经给出了 这一解释, Content providers are loaded before the application class is created. [AppWatcherInstaller] is used to install [leakcanary.AppWatcher] on application start
从而 调用
AppWatcher.manualInstall(application)
触发了LeakCanary 的初始化方法;
LeakCanary的工作原理
LeakCanary的初始化
//AppWatcher
fun manualInstall(application: Application) {
InternalAppWatcher.install(application)
}
#InternalAppWatcher
fun install(application: Application) {
checkMainThread()
if (this::application.isInitialized) {
return
}
InternalAppWatcher.application = application
if (isDebuggableBuild) {
SharkLog.logger = DefaultCanaryLog()
}
val configProvider = { AppWatcher.config }
ActivityDestroyWatcher.install(application, objectWatcher, configProvider)
FragmentDestroyWatcher.install(application, objectWatcher, configProvider)
onAppWatcherInstalled(application)
}
LeakCanary的初始化 先调用了AppWatcher的manualInstall方法,然后又调用了 InternalAppWatcher的 install方法,关键代码就在 install方法中;
install方法进行了如下操作:
- 检测当前是否在主线程
checkMainThread()
- 持有Application对象
InternalAppWatcher.application = application
3.分别调了ActivityDestroyWatcher和FragmentDestroyWatcher 的伴生对象的 install 方法
- ActivityDestroyWatcher.install
//ActivityDestroyWatcher
internal class ActivityDestroyWatcher private constructor(
private val objectWatcher: ObjectWatcher,
private val configProvider: () -> Config
) {
private val lifecycleCallbacks =
object : Application.ActivityLifecycleCallbacks by noOpDelegate() {
override fun onActivityDestroyed(activity: Activity) {
if (configProvider().watchActivities) {
objectWatcher.watch(
activity, "${activity::class.java.name} received Activity#onDestroy() callback"
)
}
}
}
companion object {
fun install(
application: Application,
objectWatcher: ObjectWatcher,
configProvider: () -> Config
) {
val activityDestroyWatcher =
ActivityDestroyWatcher(objectWatcher, configProvider)
application.registerActivityLifecycleCallbacks(activityDestroyWatcher.lifecycleCallbacks)
}
}
}
ActivityDestroyWatcher.install方法 为application 注册了一个 Activity生命周期变化监听的对象 lifecycleCallbacks ;在每个Activity对象 被销毁 调用onDestroyed方法时,使用objectWatcher 对象来 检测activity对象的回收
- FragmentDestroyWatcher.install
FragmentDestroyWatcher.install方法,和ActivityDestroyWatcher.install类型,也是为aplication对象 注册了一个Activity生命周期变化的监听对象,但是主要是为了 监听Fragment对象的销毁 ,在调用 onFragmentDestroyed(),onFragmentViewDestroyed()时,使用objectWatcher 对象来 检测view对象和fragment对象的回收。
//FragmentDestroyWatcher
fun install(
application: Application,
objectWatcher: ObjectWatcher,
configProvider: () -> AppWatcher.Config
) {
val fragmentDestroyWatchers = mutableListOf<(Activity) -> Unit>()
if (SDK_INT >= O) {
fragmentDestroyWatchers.add(
AndroidOFragmentDestroyWatcher(objectWatcher, configProvider)
)
}
...
application.registerActivityLifecycleCallbacks(object : Application.ActivityLifecycleCallbacks by noOpDelegate() {
override fun onActivityCreated(
activity: Activity,
savedInstanceState: Bundle?
) {
for (watcher in fragmentDestroyWatchers) {
watcher(activity)
}
}
})
}
//AndroidOFragmentDestroyWatcher
internal class AndroidOFragmentDestroyWatcher(
private val objectWatcher: ObjectWatcher,
private val configProvider: () -> Config
) : (Activity) -> Unit {
private val fragmentLifecycleCallbacks = object : FragmentManager.FragmentLifecycleCallbacks() {
override fun onFragmentViewDestroyed(
fm: FragmentManager,
fragment: Fragment
) {
val view = fragment.view
if (view != null && configProvider().watchFragmentViews) {
objectWatcher.watch(
view, "${fragment::class.java.name} received Fragment#onDestroyView() callback " +
"(references to its views should be cleared to prevent leaks)"
)
}
}
override fun onFragmentDestroyed(
fm: FragmentManager,
fragment: Fragment
) {
if (configProvider().watchFragments) {
objectWatcher.watch(
fragment, "${fragment::class.java.name} received Fragment#onDestroy() callback"
)
}
}
}
override fun invoke(activity: Activity) {
val fragmentManager = activity.fragmentManager
fragmentManager.registerFragmentLifecycleCallbacks(fragmentLifecycleCallbacks, true)
}
}
LeakCanary 检测对象是否被回收
LeakCanary 检测内存泄漏的关键就是,在Activity或者Fragment销毁的时候,触发一次gc内存回收,然后判断Activity或者Fragment对象 是否依然存在,如果对象依然存在没有被回收,就说明 可能存在内存泄漏,积累过多可能引发OOM内存溢出。
这样就有一个 疑问,如何判断一个对象是否被gc回收呢?
借助弱引用的特性,只要jvm的垃圾回收器 扫描到 弱引用对象 ,弱引用对象 就会被回收释放掉,但是如果 没有被回收 只能说明 这个对象还被其他static变量引用 或者native method引用;
伪代码如下:
Integer a=1;
ReferenceQueue referenceQueue = new ReferenceQueue<>();
WeakReference weakReference = new WeakReference<>(a, referenceQueue);
//触发gc,5秒后 检测referenceQueue是否存在对象
System.gc();
handler.postDelayed(new Runnable() {
@Override
public void run() {
if (referenceQueue.poll() != null) {
//a对象 已经被回收
}
}
},5000);