- window显示驱动开发—XR 格式的强制转换功能
程序员王马
windows图形显示驱动开发xr
DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM格式是DXGI_FORMAT_R10G10B10A2_TYPELESS系列的成员。因此,应用程序可以通过API级别的“视图”概念将DXGI_FORMAT_R10G10B10_XR_BIAS_A2_UNORM格式强制转换为该系列的任何其他成员。此过程是应用程序呈现到资源的预期方式。具体而言,Direct3D运行时只能通过驱动
- window显示驱动开发—从 BGR8888 转换为 XR_BIAS
程序员王马
windows图形显示驱动开发xr
例如,从BGR8888类型格式的转换(,DXGI_FORMAT_B8G8R8A8_UNORM)到XR_BIAS是无损的。显式选择比例因子510,用于在BGR8888类型格式与XR_BIAS之间提供完全不可逆的转换,而不会导致比例系数511所暗示的非线性跳跃接近0.5。核心设计原理无损转换条件BGR8888是8位/通道的归一化格式(值范围[0,1],步长1/255)。XR_BIAS的10位精度(范围
- 倾向得分匹配的stata命令_R语言系列1:倾向得分匹配
weixin_39995108
倾向得分匹配的stata命令
1PSM简介倾向评分匹配(PropensityScoreMatching,简称PSM)是一种统计学方法,用于处理观察研究(ObservationalStudy)的数据。在观察研究中,由于种种原因,数据偏差(bias)和混杂变量(confoundingvariable)较多,倾向评分匹配的方法正是为了减少这些偏差和混杂变量的影响,以便对实验组和对照组进行更合理的比较。这种方法最早由PaulRosen
- 多头注意力机制中全连接函数
不知更鸟
深度学习
在神经网络(特别是Transformer中的多头注意力机制)中,全连接函数(FullyConnectedLayer,FCLayer)通常指的是一个线性变换层,即nn.Linear在PyTorch中的实现。它本质上是一个矩阵乘法加上偏置(bias)的操作,用于对输入数据进行线性变换。1.全连接函数(nn.Linear)是什么?nn.Linear(d_model,d_model)表示一个全连接层,它的
- [C#]OpenCvSharp改变图像的对比度和亮度
FL1623863129
C#c#开发语言
目的访问像素值mat.At(y,x)用0初始化矩阵Mat.Zeros饱和操作SaturateCast.ToByte亮度和对比度调整g(x)=αf(x)+β用α(>0)和β一般称作增益(gain)和偏置(bias),分别控制对比度和亮度把f(x)看成源图像像素,把g(x)看成输出图像像素g(i,j)=α⋅f(i,j)+β其中,i和j表示像素位于第i行和第j列(左上角为第0行、第0列)相关函数Mat.
- CET6 仔细阅读 24年12月第三套-C2 美的定义这一块
-qOVOp-
英语六级算法
文章Anawakeninghasbeentakingplaceinthephysicalworldagainstthebeautymodelthathasbeendictatedtousforyears.Butinthedigitalarena,socialmediadetermineswhatisconsideredbeautiful.Thetwoopposingstrugglesaretaki
- 板凳-------Mysql cookbook学习 (十--3)
fengye207161
mysql学习adb
5.16用短语来进行fulltext查询mysql>selectcount(*)fromkjvwherematch(vtext)against('God');+----------+|count(*)|+----------+|0|+----------+1rowinset(0.00sec)mysql>selectcount(*)fromkjvwherematch(vtext)against('s
- 大白话解释一下 MIC Bias
雁过留声花欲落
#嵌软_名词解析麦克风
MICBias专业解释“MICBias”在音频电路中的意思是“麦克风偏置电压”。它是模拟麦克风(特别是驻极体电容麦克风)正常工作所必需的一个关键直流电压。以下是详细解释:作用对象:主要针对驻极体电容麦克风。这是目前最常见的模拟麦克风类型,广泛应用于手机、耳机、电脑、录音设备等。工作原理:驻极体电容麦克风内部有一个场效应晶体管作为阻抗变换器/前置放大器。这个FET需要直流电压才能工作。MICBias
- 【统计方法】基础分类器: logistic, knn, svm, lda
pen-ai
数据科学支持向量机算法机器学习
均方误差(MSE)理解与分解在监督学习中,均方误差衡量的是预测值与实际值之间的平均平方差:MSE=E[(Y−f^(X))2]\text{MSE}=\mathbb{E}[(Y-\hat{f}(X))^2]MSE=E[(Y−f^(X))2]MSE可以分解为三部分:MSE=Bias2(f^(x0))+Var(f^(x0))+Var(ε)\text{MSE}=\text{Bias}^2(\hat{f}(x
- 【机器学习及深度学习】机器学习模型的误差:偏差、方差及噪声
YoseZang
机器学习深度学习机器学习深度学习人工智能
机器学习模型的误差分析V1.0机器学习模型的衡量准则概念引入机器学习模型误差分析误差出现的原因及消除V1.0机器学习模型的衡量准则衡量机器学习模型的好坏可以考虑以下几个方面:偏差(Bias):在充分训练的情况下,机器学习模型是否能够较好地拟合训练数据,以反映真实规律。这些问题可以被称为模型的能力,衡量这一问题的指标称为偏差(Bias)。方差(Variance):在充分训练的情况下,不同的机器学习模
- 【论文笔记】SecAlign: Defending Against Prompt Injection with Preference Optimization
AustinCyy
论文笔记论文阅读
论文信息论文标题:SecAlign:DefendingAgainstPromptInjectionwithPreferenceOptimization-CCS25论文作者:SizheChen-UCBerkeley;Meta,FAIR论文链接:https://arxiv.org/abs/2410.05451代码链接:https://github.com/facebookresearch/SecAli
- 抗噪段码屏驱动防静电液晶驱动VK2C21超抗干扰液晶驱动
后端
VK2C21是一个点阵式存储映射的LCD驱动器,可支持最大80点(20SEGx4COM)或者最大128点(16SEGx8COM)的LCD屏。单片机可通过I2C接口配置显示参数和读写显示数据,也可通过指令进入省电模式。其高抗干扰,低功耗的特性适用于水电气表以及工控仪表类产品。L103+09特点:•工作电压2.4-5.5V•内置32kHzRC振荡器•偏置电压(BIAS)可配置为1/3、1/4•COM周
- Vision Transformer(vit)的Multi-Head Self-Attention(多头注意力机制)结构
O_o381
transformer人工智能深度学习pytorch
前置学习:详解Transformer中Self-Attention以及Multi-HeadAttention_transformermultihead-CSDN博客图解:核心公式:代码:classAttention(nn.Module):def__init__(self,dim,#输入token的dimnum_heads=8,#多头注意力中的头数(默认值为8)qkv_bias=False,#是否在
- 论文阅读:2024 arxiv Prompt Injection attack against LLM-integrated Applications
CSPhD-winston-杨帆
论文阅读prompt
PromptInjectionattackagainstLLM-integratedApplications总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328https://www.doubao.com/chat/6993930253668098速览这篇论文主要围绕大语言模型(LLM)集成应用的提示注入攻击展开
- LCD抗干扰驱动防静电液晶屏驱动VK2C21抗噪液晶驱动芯片
后端
VK2C21是一个点阵式存储映射的LCD驱动器,可支持最大80点(20SEGx4COM)或者最大128点(16SEGx8COM)的LCD屏。单片机可通过I2C接口配置显示参数和读写显示数据,也可通过指令进入省电模式。其高抗干扰,低功耗的特性适用于水电气表以及工控仪表类产品。L97+308特点:•工作电压2.4-5.5V•内置32kHzRC振荡器•偏置电压(BIAS)可配置为1/3、1/4•COM周
- 低功耗液晶屏驱动防静电LCD驱动VKL128抗噪段码屏驱动
后端
VKL144是一个点阵式存储映射的LCD驱动器,可支持最大144点(36SEGx4COM)的LCD屏。单片机可通过I2C接口配置显示参数和读写显示数据,可配置4种功耗模式,也可通过关显示和关振荡器进入省电模式。其高抗干扰,低功耗的特性适用于水电气表以及工控仪表类产品。L97+288特点:•工作电压2.5-5.5V•内置32kHzRC振荡器•偏置电压(BIAS)可配置为1/2、1/3•COM周期(D
- 深度可分离卷积实战(2)模型定义代码
何仙鸟
深度学习神经网络cnn
#定义深度可分离卷积层,torch没有实现,tf有实现classDepthWiseConv2d(nn.Module):def__init__(self,in_channels,out_channels,kernel_size,stride=1,padding=0,bias=True):super(DepthWiseConv2d,self).__init__()#这里写为super().__init
- 深入解析PyTorch中MultiheadAttention的隐藏参数add_bias_kv与add_zero_attn
dunzane
pytorch人工智能python
关键背景最近在学习pytorch中的源码尤其是nn.modules下算子的实现,针对activation.py下MultiheadAttention下有两个不常见的参数的使用比较有趣,因为时序领域很少使用这两个参数(add_bias_kv和add_zero_attn),但是其目的似乎很适配时序场景,尽管逻辑上听起来其直接简单,但是还是打算手动推导分析其具体的变换。以熟悉其具体的变换。参数作用源码中
- 防干扰LCD驱动省电段码驱动芯片VKL144点阵液晶屏驱动
后端
VKL144是一个点阵式存储映射的LCD驱动器,可支持最大144点(36SEGx4COM)的LCD屏。单片机可通过I2C接口配置显示参数和读写显示数据,可配置4种功耗模式,也可通过关显示和关振荡器进入省电模式。其高抗干扰,低功耗的特性适用于水电气表以及工控仪表类产品。L97+111特点:•工作电压2.5-5.5V•内置32kHzRC振荡器•偏置电压(BIAS)可配置为1/2、1/3•COM周期(D
- 省电段码驱动LCD抗干扰驱动VKL128液晶段码屏驱动器
后端
VKL144是一个点阵式存储映射的LCD驱动器,可支持最大144点(36SEGx4COM)的LCD屏。单片机可通过I2C接口配置显示参数和读写显示数据,可配置4种功耗模式,也可通过关显示和关振荡器进入省电模式。其高抗干扰,低功耗的特性适用于水电气表以及工控仪表类产品。L97+71特点:•工作电压2.5-5.5V•内置32kHzRC振荡器•偏置电压(BIAS)可配置为1/2、1/3•COM周期(DU
- 标量/向量/矩阵/张量/范数详解及其在机器学习中的应用
Psycho_MrZhang
数学矩阵机器学习线性代数
标量(Scalar)、向量(Vector)、矩阵(Matrix)、张量(Tensor)与范数(Norm)详解及其在机器学习中的应用1.标量(Scalar)定义:标量是单个数字,仅具有大小(Magnitude),没有方向。数学表示:如a=5a=5a=5,b=−3.2b=-3.2b=−3.2特点:零维数据(0DTensor)。机器学习中的应用:模型参数:如线性回归中的偏置项(Bias)。损失函数输出:
- rust-candle学习笔记11-实现一个简单的自注意力
zhuziheniaoer
学习笔记rust自然语言处理
参考:about-pytorch定义ScaledDotProductAttention结构体:usecandle_core::{Result,Device,Tensor};usecandle_nn::{Linear,Module,linear_no_bias,VarMap,VarBuilder,ops};structScaledDotProductAttention{wq:Linear,wk:Li
- rust-candle学习笔记13-实现多头注意力
zhuziheniaoer
rust学习笔记自然语言处理
参考:about-pytorch定义结构体:usecore::f32;usecandle_core::{DType,Device,Result,Tensor};usecandle_nn::{embedding,linear_no_bias,linear,ops,Dropout,Linear,Module,VarBuilder,VarMap};structMultiHeadAttention{w_q
- Qwen2.5模型结构
AloneCat2012
人工智能pytorch
self.lm_head=nn.Linear(config.hidden_size,config.vocab_size,bias=False)这个是用来干嘛的输出层,词汇投影层,将模型输出的隐藏状态向量映射回词表空间,用于预测下一个token#预测logits,未经过softmaxlm_logits=self.lm_head(hidden_states)#shape:[B,L,vocab_size
- C# NX二次开发:判断两个体是否干涉和获取系统日志的UFUN函数
喵桑さん
NX二次开发前端javascripthtml
大家好,今天要讲关于如何判断两个体是否干涉和获取系统日志的UFUN函数。(1)UF_MODL_check_interference:这个函数的定义为根据单个目标体检查每个指定的工具体是否有干扰。Definedin:uf_modl.hOverviewCheckseachspecifiedtoolbodyagainstthesingletargetbodyforinterference.Aninter
- 抗噪段码屏驱动防静电液晶驱动VK2C21超抗干扰液晶驱动
后端
VK2C21是一个点阵式存储映射的LCD驱动器,可支持最大80点(20SEGx4COM)或者最大128点(16SEGx8COM)的LCD屏。单片机可通过I2C接口配置显示参数和读写显示数据,也可通过指令进入省电模式。其高抗干扰,低功耗的特性适用于水电气表以及工控仪表类产品。L97+09特点:•工作电压2.4-5.5V•内置32kHzRC振荡器•偏置电压(BIAS)可配置为1/3、1/4•COM周期
- 多模态大语言模型arxiv论文略读(五十三)
胖头鱼爱算法
#mllm_daily语言模型人工智能自然语言处理
RedTeamingGPT-4V:AreGPT-4VSafeAgainstUni/Multi-ModalJailbreakAttacks?➡️论文标题:RedTeamingGPT-4V:AreGPT-4VSafeAgainstUni/Multi-ModalJailbreakAttacks?➡️论文作者:ShuoChen,ZhenHan,BailanHe,ZifengDing,WenqianYu,P
- 论文阅读笔记—— AdvFilter: Predictive Perturbation-aware Filtering against Adversarial Attack via Multi-d L
jessIoss
论文阅读笔记DeepFake论文阅读笔记
文章目录AdvFilter:PredictivePerturbation-awareFilteringagainstAdversarialAttackviaMulti-domainLearning背景贡献相关工作对抗性去噪防御对抗性训练防御其他对抗性防御方法一般图像去噪创新公式方法多域学习实验AdvFilter:PredictivePerturbation-awareFilteringagains
- 【论文阅读】APMSA: Adversarial Perturbation Against Model Stealing Attacks
Bosenya12
论文阅读
摘要训练深度学习(DL)模型需要专有数据和计算密集型资源。为了收回训练成本,模型提供商可以通过机器学习即服务(MLaaS)将DL模型货币化。通常,该模型部署在云中,同时为付费查询提供可公开访问的应用程序编程接口(API)以获得好处。然而,模型窃取攻击对这种模型货币化计划构成了安全威胁,因为它们窃取了模型,而没有为未来的大量查询付费。具体来说,攻击者通过对目标模型进行查询,获取输入输出对,从而通过对
- 【论文阅读】Examining of Shallow Autoencoder on Black-box Attack against Face Recognition
Bosenya12
论文阅读
摘要在本文中,我们提出了一种对人脸识别有效的黑盒对抗示例(A.E.)攻击。用于人脸识别的黑盒A.E.存在攻击成功概率低、攻击目标有限或计算复杂度大等多重问题,导致在许多实际场景中不切实际。因此,我们提出了一种更有效的利用黑盒A.E.攻击人脸识别系统的方法,基于Huang等人的A.E.生成方法,创建了一个适合人脸识别的攻击替代模型。为了进行评估,该方法和公共数据集用于攻击在人脸识别系统中注册的任意和
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1