——二叉树

二叉树种类

二叉树有两种主要的形式:满二叉树和完全二叉树。

满二叉树

如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。
——二叉树_第1张图片

完全二叉树

在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层(h从1开始),则该层包含 1~ 2^(h-1) 个节点。

——二叉树_第2张图片
堆就是一棵完全二叉树,同时保证父子节点的顺序关系。

二叉搜索树

二叉搜索树是一个有序树。

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉排序树

——二叉树_第3张图片

平衡二叉搜索树

又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
——二叉树_第4张图片

二叉树的存储方式

二叉树可以链式存储,也可以顺序存储。
那么链式存储方式就用指针, 顺序存储的方式就是用数组。

链式存储——二叉树_第5张图片

顺序存储

——二叉树_第6张图片
如果父节点的数组下标是 i,那么它的左孩子就是 i * 2 + 1,右孩子就是 i * 2 + 2。

二叉树的遍历方式

二叉树主要有两种遍历方式:

  1. 深度优先遍历:先往深走,遇到叶子节点再往回走。
  2. 广度优先遍历:一层一层的去遍历。

前中后,其实指的就是中间节点的遍历顺序
深度优先遍历
前序遍历(递归法,迭代法)
中序遍历(递归法,迭代法)
后序遍历(递归法,迭代法)
——二叉树_第7张图片

广度优先遍历
层次遍历(迭代法)

作者声明

如有问题,欢迎指正!

你可能感兴趣的:(leetcode,数据结构,算法)