目录
一、前言
二、实验环境
三、Matplotlib详解
1、2d绘图类型
2、3d绘图类型
3、多子图和布局
1. subplot()函数
2. subplots()函数
简单示例
Python是一种高级编程语言,由Guido van Rossum于1991年创建。它以简洁、易读的语法而闻名,并且具有强大的功能和广泛的应用领域。Python具有丰富的标准库和第三方库,可以用于开发各种类型的应用程序,包括Web开发、数据分析、人工智能、科学计算、自动化脚本等。
Python本身是一种伟大的通用编程语言,在一些流行的库(numpy,scipy,matplotlib)的帮助下,成为了科学计算的强大环境。本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容:
matplotlib | 3.5.3 | |
numpy | 1.21.6 | |
python | 3.7.16 |
python --version
import sys
import numpy as np
import matplotlib
print("Python 版本:", sys.version)
print("NumPy 版本:", np.__version__)
print("matplotlib 版本:", matplotlib.__version__)
Matplotlib是一个用于创建数据可视化的Python库。它提供了广泛的绘图选项,能够生成各种类型的图表、图形和可视化效果。下面是Matplotlib的一些主要功能:
绘图风格和类型:Matplotlib支持各种绘图风格和类型,包括线图、散点图、柱状图、饼图、等高线图、3D图等,可以根据需要选择适合的图表类型来展示和分析数据。
数据可视化:Matplotlib使得将数据转化为可视化表示变得简单,可以使用Matplotlib绘制图表来展示数据的分布、趋势、关系等,这有助于更好地理解数据和发现潜在的模式和关联。
图表自定义:Matplotlib提供了丰富的图表自定义选项,可以调整图表的标题、标签、坐标轴、线条样式、颜色等。这使得您能够创建符合特定需求和品味的高质量图表。
多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。
导出图像:Matplotlib支持将图像导出为多种格式,包括PNG、JPEG、PDF、SVG等。这使得您可以方便地将生成的图表保存为文件,或嵌入到文档、报告和演示文稿中。
无论是进行科学研究、数据分析、报告撰写还是可视化展示,Matplotlib都是一个强大而灵活的工具。它广泛应用于各个领域,如数据科学、机器学习、金融分析、工程可视化等。
2d绘图(上):折线图、散点图、柱状图、直方图、饼图_QomolangmaH的博客-CSDN博客编辑https://blog.csdn.net/m0_63834988/article/details/132872575?spm=1001.2014.3001.5501编辑https://blog.csdn.net/m0_63834988/article/details/132872575?spm=1001.2014.3001.5501https://blog.csdn.net/m0_63834988/article/details/132872575?spm=1001.2014.3001.5501
2d绘图(下):箱线图、热力图、面积图、等高线图、极坐标图_QomolangmaH的博客-CSDN博客编辑https://blog.csdn.net/m0_63834988/article/details/132890656?spm=1001.2014.3001.5501编辑https://blog.csdn.net/m0_63834988/article/details/132890656?spm=1001.2014.3001.5501https://blog.csdn.net/m0_63834988/article/details/132890656?spm=1001.2014.3001.5501
Matplotlib绘图_QomolangmaH的博客-CSDN博客https://blog.csdn.net/m0_63834988/category_12441299.html
subplot()
函数
Matplotlib多子图和布局:subplot()函数_QomolangmaH的博客-CSDN博客https://blog.csdn.net/m0_63834988/article/details/132908035?spm=1001.2014.3001.5501
subplots()
函数用于一次性创建多个子图,并以二维数组方式组织它们。其语法如下:
import matplotlib.pyplot as plt
fig, axs = plt.subplots(nrows, ncols)
nrows
表示子图的行数,ncols
表示子图的列数。fig
是整个图形对象,而axs
是包含所有子图的numpy数组。import matplotlib.pyplot as plt
fig, axs = plt.subplots(2, 2) # 创建一个2行2列的子图布局
axs[0, 0].plot([1, 2, 3, 4], [1, 4, 9, 16]) # 第一个子图
axs[0, 1].plot([1, 2, 3, 4], [1, 2, 3, 4]) # 第二个子图
axs[1, 0].plot([1, 2, 3, 4], [1, 8, 27, 64]) # 第三个子图
axs[1, 1].plot([1, 2, 3, 4], [1, 16, 81, 256]) # 第四个子图
plt.show()