bitmap以及一些常见应用

转自:https://blog.csdn.net/hackerwin7/article/details/17585257 和https://www.cnblogs.com/yangjiannr/p/da-shu-ju-chu-libitmap.html

一、bitmap算法思想 

    32位机器上,一个整形,比如int a; 在内存中占32bit位,可以用对应的32bit位对应十进制的0-31个数,bitmap算法利用这种思想处理大量数据的排序与查询. 

    优点:1.运算效率高,不许进行比较和移位;2.占用内存少,比如N=10000000;只需占用内存为N/8=1250000Byte=1.25M。 
   缺点:所有的数据不能重复。即不可对重复的数据进行排序和查找。 

   比如: 
          第一个4就是 
          00000000000000000000000000010000 
          而输入2的时候 
          00000000000000000000000000010100 
          输入3时候 
          00000000000000000000000000011100 
          输入1的时候 
          00000000000000000000000000011110 

    思想比较简单,关键是十进制和二进制bit位需要一个map图,把十进制的数映射到bit位。下面详细说明这个map映射表。 

二、map映射表 

假设需要排序或者查找的总数N=10000000,那么我们需要申请内存空间的大小为int a[1 + N/32],其中:a[0]在内存中占32为可以对应十进制数0-31,依次类推: 
bitmap表为: 

a[0]--------->0-31 
a[1]--------->32-63 
a[2]--------->64-95 
a[3]--------->96-127 
.......... 

那么十进制数如何转换为对应的bit位,下面介绍用位移将十进制数转换为对应的bit位。 

三、位移转换 

例如十进制0,对应在a[0]所占的bit为中的第一位: 
00000000000000000000000000000001 

0-31:对应在a[0]中 

i =0                        00000000000000000000000000000000 
temp=0                  00000000000000000000000000000000 
answer=1                00000000000000000000000000000001 
i =1                         00000000000000000000000000000001 
temp=1                   00000000000000000000000000000001 
answer=2                 00000000000000000000000000000010 
i =2                          00000000000000000000000000000010 
temp=2                    00000000000000000000000000000010 
answer=4                  00000000000000000000000000000100 
i =30                         00000000000000000000000000011110 
temp=30                   00000000000000000000000000011110 
answer=1073741824  01000000000000000000000000000000 
i =31                         00000000000000000000000000011111 
temp=31                   00000000000000000000000000011111 
answer=-2147483648 10000000000000000000000000000000 

32-63:对应在a[1]中 

i =32                    00000000000000000000000000100000 
temp=0                00000000000000000000000000000000 
answer=1              00000000000000000000000000000001 
i =33                     00000000000000000000000000100001 
temp=1                 00000000000000000000000000000001 
answer=2               00000000000000000000000000000010 
i =34                      00000000000000000000000000100010 
temp=2                  00000000000000000000000000000010 
answer=4                00000000000000000000000000000100 
i =61                       00000000000000000000000000111101 
temp=29                  00000000000000000000000000011101 
answer=536870912   00100000000000000000000000000000 
i =62                        00000000000000000000000000111110 
temp=30                   00000000000000000000000000011110 
answer=1073741824  01000000000000000000000000000000 
i =63                         00000000000000000000000000111111 
temp=31                   00000000000000000000000000011111 
answer=-2147483648 10000000000000000000000000000000 


浅析上面的对应表: 
1.求十进制0-N对应在数组a中的下标: 
十进制0-31,对应在a[0]中,先由十进制数n转换为与32的余可转化为对应在数组a中的下标。比如n=24,那么 n/32=0,则24对应在数组a中的下标为0。又比如n=60,那么n/32=1,则60对应在数组a中的下标为1,同理可以计算0-N在数组a中的下标。 

2.求0-N对应0-31中的数: 
十进制0-31就对应0-31,而32-63则对应也是0-31,即给定一个数n可以通过模32求得对应0-31中的数。 

3.利用移位0-31使得对应32bit位为1. 

 

应用:

1. Bit-map应用之快速排序
  假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复),我们就可以采用Bit-map的方法来达到排序的目的。要表示8个数,我们就只需要8个Bit(1Bytes),首先我们开辟1Byte的空间,将这些空间的所有Bit位都置为0,

  对应位设置为1:

  遍历一遍Bit区域,将该位是一的位的编号输出(2,3,4,5,7),这样就达到了排序的目的,时间复杂度O(n)。
  优点:
    运算效率高,不需要进行比较和移位;
    占用内存少,比如N=10000000;只需占用内存为N/8=1250000Byte=1.25M。 
  缺点:
    所有的数据不能重复。即不可对重复的数据进行排序和查找。

2. Bit-map应用之快速去重
  2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。 
  首先,根据“内存空间不足以容纳这2.5亿个整数”我们可以快速的联想到Bit-map。下边关键的问题就是怎么设计我们的Bit-map来表示这2.5亿个数字的状态了。其实这个问题很简单,一个数字的状态只有三种,分别为不存在,只有一个,有重复。因此,我们只需要2bits就可以对一个数字的状态进行存储了,假设我们设定一个数字不存在为00,存在一次01,存在两次及其以上为11。那我们大概需要存储空间几十兆左右。
  接下来的任务就是遍历一次这2.5亿个数字,如果对应的状态位为00,则将其变为01;如果对应的状态位为01,则将其变为11;如果为11,,对应的转态位保持不变。
  最后,我们将状态位为01的进行统计,就得到了不重复的数字个数,时间复杂度为O(n)。

3. Bit-map应用之快速查询
  同样,我们利用Bit-map也可以进行快速查询,这种情况下对于一个数字只需要一个bit位就可以了,0表示不存在,1表示存在。假设上述的题目改为,如何快速判断一个数字是够存在于上述的2.5亿个数字集合中。
  同之前一样,首先我们先对所有的数字进行一次遍历,然后将相应的转态位改为1。遍历完以后就是查询,由于我们的Bit-map采取的是连续存储(整型数组形式,一个数组元素对应32bits),我们实际上是采用了一种分桶的思想。一个数组元素可以存储32个状态位,那将待查询的数字除以32,定位到对应的数组元素(桶),然后再求余(%32),就可以定位到相应的状态位。如果为1,则代表改数字存在;否则,该数字不存在。

4. Bit-map扩展——Bloom Filter(布隆过滤器)
  当一个元素被加入集合中时,通过k各散列函数将这个元素映射成一个位数组中的k个点,并将这k个点全部置为1.
  有一定的误判率--在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误判为属于这个集合.因此,它不适合那些"零误判"的应用场合.在能容忍低误判的应用场景下,布隆过滤器通过极少的误判换区了存储空间的极大节省.

  Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到{1,…,m}的范围中。对任意一个元素x,第i个哈希函数映射的位置hi(x)就会被置为1(1≤i≤k)。注:如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。

在判断y是否属于这个集合时,对y应用k次哈希函数,若所有hi(y)的位置都是1(1≤i≤k),就认为y是集合中的元素,否则就认为y不是集合中的元素。

5. 总结
  使用Bit-map的思想,我们可以将存储空间进行压缩,而且可以对数字进行快速排序、去重和查询的操作。Bloom Fliter是Bit-map思想的一种扩展,它可以在允许低错误率的场景下,大大地进行空间压缩,是一种拿错误率换取空间的数据结构。

6. 应用
  适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下
  基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码
  扩展:bloom filter可以看做是对bit-map的扩展

你可能感兴趣的:(数据结构与算法)