安静的夜晚 你在想谁吗
栈是一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFO(Last In First Out)的原则。
一般使用数组
实现栈
队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出。FIFO(First In First Out)
力扣题目链接:有效的括号
给定一个只包括 ‘(’,‘)’,‘{’,‘}’,‘[’,‘]’ 的字符串 s ,判断字符串是否有效。
有效字符串需满足:
- 左括号必须用相同类型的右括号闭合。
- 左括号必须以正确的顺序闭合。
- 每个右括号都有一个对应的相同类型的左括号。
题目分析
本题通俗的来讲,就是判断括号是否是匹配的,即括号的类型是否匹配和数量是否匹配。我们可以使用栈的知识来解决这道题:从给定序列的第一个字符开始遍历,如果遍历遇到左括号,就入栈;如果遍历遇到右括号,则先取栈顶元素,再出栈(因为合适的匹配必须是栈),判断栈顶元素与这个右括号是否匹配。
需要注意的点有:尽量每次循环只遍历一个元素或只对一个元素进行判断,这样可以保证数量匹配的正确性。当遍历一个元素不是左括号的时候,就判断栈中是否为空,如果栈为空,则说明数量是不匹配的;如果栈不为空,则要对这个右括号是否和栈顶的左括号匹配进行判断。
其实本题比较复杂的还是结构的问题,毕竟不用C++的,这个栈的功能需要我们自己去实现。
力扣代码(含栈结构)
typedef char STDataType;
typedef struct Stack
{
STDataType* a;
int top;
int capacity;
}ST;
void STInit(ST* ps);
void STDestroy(ST* ps);
void STPush(ST* ps, STDataType x);
void STPop(ST* ps);
STDataType STtop(ST* ps);
int STsize(ST* ps);
bool STEmpty(ST* ps);
void STInit(ST* ps)
{
ps->a = NULL;
ps->top = 0;
ps->capacity = 0;
}
void STDestroy(ST* ps)
{
assert(ps);
free(ps->a);
ps->a = NULL;
ps->capacity = 0;
ps->top = 0;
}
void STPush(ST* ps, STDataType x)
{
assert(ps);
if (ps->top == ps->capacity)
{
int NEWcapacity = (ps->capacity == 0) ? 4 : (ps->capacity * 2);
//扩容
STDataType* tmp = realloc(ps->a, sizeof(STDataType) * NEWcapacity);
if (tmp == NULL)
{
perror("realloc fail");
exit(-1);
}
ps->a = tmp;
ps->capacity = NEWcapacity;
}
ps->a[ps->top] = x;
ps->top++;
}
void STPop(ST* ps)
{
assert(ps);
assert(ps->top > 0);
ps->top--;
}
//获取栈顶元素
STDataType STtop(ST* ps)
{
assert(ps);
assert(ps->top>0);
return ps->a[ps->top-1];
}
int STsize(ST* ps)
{
assert(ps);
return ps->top;
}
bool STEmpty(ST* ps)
{
assert(ps);
return (ps->top == 0);
}
bool isValid(char * s){
ST st;
STInit(&st);
char stack_top;
while(*s)
{
if(*s=='('||*s=='['||*s=='{')
{
STPush(&st,*s);
}
else
{
if(STEmpty(&st))
{
STDestroy(&st);
return false;
}
stack_top=STtop(&st);
STPop(&st);
if(*s==')'&&stack_top!='('||
*s==']'&&stack_top!='['||
*s=='}'&&stack_top!='{')
{
STDestroy(&st);
return false;
}
}
s++;
}
if(!STEmpty(&st))
{
STDestroy(&st);
return false;
}
return true;
}
当代码在所有不满足的情况下依旧没有返回 false 的时候,则说明它是满足括号的有效性的。
力扣题目链接:用队列实现栈
你只能使用队列的基本操作 —— 也就是 push to back、peek/pop from front、size 和 is empty 这些操作。
你所使用的语言也许不支持队列。 你可以使用 list (列表)或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
范例:
题目分析及思路
队列是先进先出,要实现一个后进先出的栈,一个队列肯定是不行的,必须使用两个队列来互相导着来实现。例如,我现在要对这个数据结构入4个元素:1 2 3 4
队列只能 pop 先 push 的元素,而要达到将最后进入的元素 pop 的目的,就需要另一个队列来帮忙了:先将所有元素都push到队列1,取 队列1 头位置的元素,将它 push 到 队列2 中后,再将 队列1 中这个元素 pop 掉。如此往复,直到 队列1 中只剩下一个元素,这就是栈结构中需要 pop 的元素。
再将最后这个元素pop掉,就相当于将栈结构里的栈顶元素pop掉了。这样就实现了栈的pop功能。
在上面的例子中,我们可以总结出队列实现栈的一般规律:实现push数据,就往空的队列里push;实现pop数据,先将费控队列的前n-1个元素导入空队列,并pop这n-1个元素,最后将剩下的那个元素pop掉即可实现栈的pop功能。
力扣代码(含结构)
typedef int QDataType;
typedef struct QueueNode {
QDataType data;
struct QueueNode* next;
}QNode;
typedef struct Queue {
QNode* head;
QNode* tail;
int size;
}Que;
void QueueInit(Que*pq);
void QueueDestroy(Que* pq);
void QueuePush(Que* pq, QDataType x);
void QueuePop(Que* pq);
QDataType QueueFront(Que* pq);
QDataType QueueBack(Que* pq);
bool QueueEmpty(Que* pq);
int QueueSize(Que* pq);
void QueueInit(Que* pq)
{
assert(pq);
pq->head = pq->tail = NULL;
pq->size = 0;
}
void QueueDestroy(Que* pq)
{
assert(pq);
QNode* cur = pq->head;
while (cur)
{
QNode* next = cur->next;
free(cur);
cur = next;
}
}
void QueuePush(Que* pq, QDataType x)
{
assert(pq);
QNode* nownode = (QNode*)malloc(sizeof(QNode));
if (nownode == NULL)
{
perror("malloc fail");
exit(-1);
}
nownode->data = x;
nownode->next = NULL;
if (pq->tail == NULL)
{
pq->head = pq->tail = nownode;
}
else
{
pq->tail->next = nownode;
pq->tail = nownode;
}
pq->size++;
}
void QueuePop(Que* pq)
{
assert(pq);
assert(pq->head != NULL);
if (pq->head->next == NULL)
{
free(pq->head);
pq->head = pq->tail = NULL;
}
else
{
QNode* next = pq->head->next;
free(pq->head);
pq->head = next;
}
pq->size--;
}
QDataType QueueFront(Que* pq)
{
assert(pq);
assert(pq->head != NULL);
return pq->head->data;
}
QDataType QueueBack(Que* pq)
{
assert(pq);
assert(pq->head!=NULL);
return pq->tail->data;
}
bool QueueEmpty(Que* pq)
{
assert(pq);
return pq->head == NULL;
}
int QueueSize(Que* pq)
{
assert(pq);
return pq->size;
}
typedef struct {
Que q1,q2;
} MyStack;
MyStack* myStackCreate() {
MyStack*pst=(MyStack*)malloc(sizeof(MyStack));
QueueInit(&pst->q1);//->的优先级高于&,其实是&(pst->q1),将定义的结构体变量的地址传过去
QueueInit(&pst->q2);
return pst;
}
void myStackPush(MyStack* obj, int x) {
if(!QueueEmpty(&obj->q1))
{
QueuePush(&obj->q1,x);
}
else
{
QueuePush(&obj->q2,x);
}
}
int myStackPop(MyStack* obj) {
Que*empty=&obj->q1;
Que*nonEmpty=&obj->q2;
if(!QueueEmpty(&obj->q1))
{
empty=&obj->q2;
nonEmpty=&obj->q1;
}
//把非空队列的前size-1个元素push到空队列
while(QueueSize(nonEmpty)>1)
{
QueuePush(empty,QueueFront(nonEmpty));
QueuePop(nonEmpty);
}
int top=QueueFront(nonEmpty);
QueuePop(nonEmpty);
return top;
}
int myStackTop(MyStack* obj) {
if(QueueEmpty(&obj->q1))
{
return QueueBack(&obj->q2);
}
else
{
return QueueBack(&obj->q1);
}
}
bool myStackEmpty(MyStack* obj) {
return QueueEmpty(&obj->q1)&&QueueEmpty(&obj->q2);}
void myStackFree(MyStack* obj) {
QueueDestroy(&obj->q1);
QueueDestroy(&obj->q2);
free(obj);
}
/**
* Your MyStack struct will be instantiated and called as such:
* MyStack* obj = myStackCreate();
* myStackPush(obj, x);
* int param_2 = myStackPop(obj);
* int param_3 = myStackTop(obj);
* bool param_4 = myStackEmpty(obj);
* myStackFree(obj);
*/
力扣题目链接:用栈实现队列
你 只能 使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
范例:
题目分析及思路
题目要求只使用栈的基本操作实现一个队列,这就需要两个栈进行‘合作’来完成。
例如,现在要往队列中 push 四个数据1,2,3,4。
创建两个栈,一个pushst,一个popst,如图,先将这四个数据push到 pushst 这个栈中。
现在,如果要实现队列的 pop 操作,就要将数据1 删除,但栈只能pop栈顶元素,所以只能先将pushst中的‘上面’的三个数据先导过来(取栈顶元素,再pop),然后数据1 就变成了 pushst 的栈顶元素,直接pop即可。
接下来,如果队列还需要 pop 数据的话,只需要在 popst 中 pop 即可。
如果要 push 数据,直接push 到pushst中,再次push后,如果要pop数据,需要将popst中的数据pop完后(直接取栈顶元素),将 pushst 中新push 的 n-1 个数据先导过去,再用上面的方式(出popst中的数据即可)。
总结
:定义两个栈,队列需要push数据的时候,先往pushst中push数据(此时栈popst中为空),首次需要pop数据的时候,先将pushst中push的n-1个数据导入popst中,然后将最后一个元素pop掉,这就是队列要pop的头。当将n-1个数据导入popst中后,如果队列再要pop数据,就直接使用栈 popst 进行pop数据,入数据的时候就继续在pushst中压栈,当popst中的数据pop完了直接还要pop的话,就需要再将pushst中的n-1个元素导过去,如此往复…
力扣代码(含结构)
typedef int STDataType;
typedef struct Stack
{
STDataType* a;
int top;//栈顶位置
int capacity;//栈空间大小
}ST;
void STInit(ST* ps);
void STPush(ST* ps,STDataType x);
void STPrint(ST* ps);
void STPop(ST* ps);
void STDestroy(ST* ps);
STDataType STTop(ST* ps);
int STSize(ST* ps);
bool STEmpty(ST* ps);
void STInit(ST* ps)
{
assert(ps);
ps->a = NULL;
ps->capacity = 0;
ps->top = 0;
}
void STPush(ST* ps, STDataType x)
{
assert(ps);
if (ps->capacity==ps->top)
{
int newcapacity = (ps->capacity == 0) ? 4 : ps->capacity * 2;
STDataType* tmp = (STDataType*)realloc(ps->a, newcapacity * sizeof(ps->a));
if (tmp == NULL)
{
perror("realloc fail");
exit(-1);
}
ps->capacity = newcapacity;
ps->a = tmp;
}
ps->a[ps->top] = x;
ps->top++;
}
void STPrint(ST* ps)
{
assert(ps);
int i = 0;
for (i = 0; i < ps->top; i++)
{
printf("%d ", ps->a[i]);
}
printf("\n");
}
void STPop(ST* ps)
{
assert(ps);
assert(ps->top>0);
(ps->top)--;
}
void STDestroy(ST* ps)
{
assert(ps);
free(ps->a);
ps->a = NULL;
ps->capacity = ps->top = 0;
}
STDataType STTop(ST* ps)
{
assert(ps);
assert(ps->top > 0);
return ps->a[ps->top - 1];
}
int STSize(ST* ps)
{
assert(ps);
return ps->top;
}
bool STEmpty(ST* ps)
{
assert(ps);
return ps->top == 0;
}
typedef struct {
ST pushst;
ST popst;
} MyQueue;
MyQueue* myQueueCreate() {
MyQueue*obj=(MyQueue*)malloc(sizeof(MyQueue));
STInit(&obj->pushst);
STInit(&obj->popst);
return obj;
}
void myQueuePush(MyQueue* obj, int x) {
STPush(&obj->pushst,x);
}
int myQueuePop(MyQueue* obj) {
int front=myQueuePeek(obj);
STPop(&obj->popst);
return front;
}
int myQueuePeek(MyQueue* obj) {
if(STEmpty(&obj->popst))
{
while(STSize(&obj->pushst)>0)
{
STPush(&obj->popst,STTop(&obj->pushst));
STPop(&obj->pushst);
}
}
return STTop(&obj->popst);
}
bool myQueueEmpty(MyQueue* obj) {
return STEmpty(&obj->popst)&&STEmpty(&obj->pushst);
}
void myQueueFree(MyQueue* obj) {
STDestroy(&obj->pushst);
STDestroy(&obj->popst);
free(obj);
}
力扣题目链接:设计循环队列
范例:
个人理解:当我们使用数组(顺序表)来实现队列的时候,随着出数据的时候队头不断前移,那么队列的容量(队头到队尾)将会越来越小,如下图:
所以可以采用循环队列的方式来维持队列容量的恒定。
此题需要的空间固定为k,并且要将这些空间重复利用,所以采用用数组实现最为合适。
思路
开辟数组空间的时候‘多开一个’,利用数组的下标来控制队尾和队头的位置。
比如,当队列的长度为4的时候,就开辟5块空间的地址,最后一块空间用来把握队列长度来防止越界。当队头和队尾相等的时候,说明队列为空;当(队尾+1)%(k+1)等于队头的时候,说明队头和队尾之间只有一块空间的地址,说明队列已满。
力扣代码
typedef struct {
int*a;
int k;
int front;
int rear;
} MyCircularQueue;
MyCircularQueue* myCircularQueueCreate(int k) {
MyCircularQueue*obj=(MyCircularQueue*)malloc(sizeof(MyCircularQueue));
obj->a=(int*)malloc(sizeof(int)*(k+1));
obj->k=k;
obj->front=obj->rear=0;
return obj;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj) {
return obj->front==obj->rear;
}
bool myCircularQueueIsFull(MyCircularQueue* obj) {
return (obj->rear+1)%(obj->k+1)==obj->front;
}
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value) {
if(myCircularQueueIsFull(obj))
return false;
obj->a[obj->rear]=value;
obj->rear++;
obj->rear%=obj->k+1;
return true;
}
bool myCircularQueueDeQueue(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
return false;
obj->front++;
obj->front%=obj->k+1;
return true;
}
int myCircularQueueFront(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
return -1;
return obj->a[obj->front];
}
int myCircularQueueRear(MyCircularQueue* obj) {
if(myCircularQueueIsEmpty(obj))
return -1;
return obj->a[(obj->rear+obj->k)%(obj->k+1)];
}
void myCircularQueueFree(MyCircularQueue* obj) {
free(obj->a);
obj->a=NULL;
free(obj);
obj=NULL;
}
/**
* Your MyCircularQueue struct will be instantiated and called as such:
* MyCircularQueue* obj = myCircularQueueCreate(k);
* bool param_1 = myCircularQueueEnQueue(obj, value);
* bool param_2 = myCircularQueueDeQueue(obj);
* int param_3 = myCircularQueueFront(obj);
* int param_4 = myCircularQueueRear(obj);
* bool param_5 = myCircularQueueIsEmpty(obj);
* bool param_6 = myCircularQueueIsFull(obj);
* myCircularQueueFree(obj);
*/