hdu4449Building Design(三维凸包+平面旋转)

链接

看了几小时也没看懂代码表示的何意。。无奈下来问问考研舍友。

还是考研舍友比较靠谱,分分钟解决了我的疑问。

 

可能三维的东西在纸面上真的不好表示,网上没有形象的题解,只有简单"明了"的讲解。

这题说起来很简单,求下三维凸包,枚举每一个面,进行坐标旋转,使得当前面作为xoy面时的其他坐标,然后求下投影面的凸包的面积。

为什么要旋转面而不直接算点到面的距离,是因为投影的面积没有办法算。

面旋转时是怎么旋转的,首先求得当前面的法向量p1,再求得它与向量e(0,0,1)的法向量pp,所有的点都是绕pp这个向量旋转的,并且旋转的角度是p1与e的夹角。

如果还有跟我一样不懂空间叉积代表的是什么的同学向后看---》法向量 = 平面上两条不平行的向量的叉积。

这样求出每个点的都是相对于当前平面的点,只取点的x,y坐标即每个点的投影点-->求二维凸包-->求面积。

 

  1 #include <iostream>

  2 #include<cstdio>

  3 #include<cstring>

  4 #include<algorithm>

  5 #include<stdlib.h>

  6 #include<vector>

  7 #include<cmath>

  8 #include<queue>

  9 #include<set>

 10 using namespace std;

 11 #define N 510

 12 #define INF 1e20

 13 #define max(a,b) (a>b?a:b)

 14 #define min(a,b) (a<b?a:b)

 15 #define eps 1e-8

 16 #define MAXV 505

 17 const double pi = acos(-1.0);

 18 const double inf = ~0u>>2;

 19 //三维点

 20 struct point3

 21 {

 22     double x, y,z;

 23     point3() {}

 24     point3(double _x, double _y, double _z): x(_x), y(_y), z(_z) {}

 25     point3 operator +(const point3 p1)

 26     {

 27         return point3(x+p1.x,y+p1.y,z+p1.z);

 28     }

 29     point3 operator - (const point3 p1)

 30     {

 31         return point3(x - p1.x, y - p1.y, z - p1.z);

 32     }

 33     point3 operator * (point3 p)

 34     {

 35         return point3(y*p.z-z*p.y, z*p.x-x*p.z, x*p.y-y*p.x);    //叉乘

 36     }

 37     point3 operator *(double d)

 38     {

 39         return point3(x*d,y*d,z*d);

 40     }

 41     point3 operator /(double d)

 42     {

 43         return point3(x/d,y/d,z/d);

 44     }

 45     double operator ^ (point3 p)

 46     {

 47         return x*p.x+y*p.y+z*p.z;    //点乘

 48     }

 49 

 50 } pp[N],rp[N];

 51 struct point

 52 {

 53     double x,y;

 54     point(double x=0,double y=0):x(x),y(y) {}

 55     point operator -(point b)

 56     {

 57         return point(x-b.x,y-b.y);

 58     }

 59 } p[N],ch[N];

 60 struct _3DCH

 61 {

 62     struct fac

 63     {

 64         int a, b, c;    //表示凸包一个面上三个点的编号

 65         bool ok;        //表示该面是否属于最终凸包中的面

 66     };

 67 

 68     int n;    //初始点数

 69     point3 P[MAXV];    //初始点

 70 

 71     int cnt;    //凸包表面的三角形数

 72     fac F[MAXV*8]; //凸包表面的三角形

 73 

 74     int to[MAXV][MAXV];

 75     double vlen(point3 a)

 76     {

 77         return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);

 78     }  //向量长度

 79     double area(point3 a, point3 b, point3 c)

 80     {

 81         return vlen((b-a)*(c-a));

 82     }    //三角形面积*2

 83     double volume(point3 a, point3 b, point3 c, point3 d)

 84     {

 85         return (b-a)*(c-a)^(d-a);    //四面体有向体积*6

 86     }

 87     //正:点在面同向

 88     double point3of(point3 &p, fac &f)

 89     {

 90         point3 m = P[f.b]-P[f.a], n = P[f.c]-P[f.a], t = p-P[f.a];

 91         return (m * n) ^ t;

 92     }

 93     void deal(int p, int a, int b)

 94     {

 95         int f = to[a][b];

 96         fac add;

 97         if (F[f].ok)

 98         {

 99             if (point3of(P[p], F[f]) > eps)

100                 dfs(p, f);

101             else

102             {

103                 add.a = b, add.b = a, add.c = p, add.ok = 1;

104                 to[p][b] = to[a][p] = to[b][a] = cnt;

105                 F[cnt++] = add;

106             }

107         }

108     }

109     void dfs(int p, int cur)

110     {

111         F[cur].ok = 0;

112         deal(p, F[cur].b, F[cur].a);

113         deal(p, F[cur].c, F[cur].b);

114         deal(p, F[cur].a, F[cur].c);

115     }

116     bool same(int s, int t)

117     {

118         point3 &a = P[F[s].a], &b = P[F[s].b], &c = P[F[s].c];

119         return fabs(volume(a, b, c, P[F[t].a])) < eps && fabs(volume(a, b, c, P[F[t].b])) < eps && fabs(volume(a, b, c, P[F[t].c])) < eps;

120     }

121     //构建三维凸包

122     void construct()

123     {

124         cnt = 0;

125         if (n < 4)

126             return;

127         bool sb = 1;

128         //使前两点不公点

129         for (int i = 1; i < n; i++)

130         {

131             if (vlen(P[0] - P[i]) > eps)

132             {

133                 swap(P[1], P[i]);

134                 sb = 0;

135                 break;

136             }

137         }

138         if (sb)return;

139         sb = 1;

140         //使前三点不公线

141         for (int i = 2; i < n; i++)

142         {

143             if (vlen((P[0] - P[1]) * (P[1] - P[i])) > eps)

144             {

145                 swap(P[2], P[i]);

146                 sb = 0;

147                 break;

148             }

149         }

150         if (sb)return;

151         sb = 1;

152         //使前四点不共面

153         for (int i = 3; i < n; i++)

154         {

155             if (fabs((P[0] - P[1]) * (P[1] - P[2]) ^ (P[0] - P[i])) > eps)

156             {

157                 swap(P[3], P[i]);

158                 sb = 0;

159                 break;

160             }

161         }

162         if (sb)return;

163         fac add;

164         for (int i = 0; i < 4; i++)

165         {

166             add.a = (i+1)%4, add.b = (i+2)%4, add.c = (i+3)%4, add.ok = 1;

167             if (point3of(P[i], add) > 0)

168                 swap(add.b, add.c);

169             to[add.a][add.b] = to[add.b][add.c] = to[add.c][add.a] = cnt;

170             F[cnt++] = add;

171         }

172         for (int i = 4; i < n; i++)

173         {

174             for (int j = 0; j < cnt; j++)

175             {

176                 if (F[j].ok && point3of(P[i], F[j]) > eps)

177                 {

178                     dfs(i, j);

179                     break;

180                 }

181             }

182         }

183         int tmp = cnt;

184         cnt = 0;

185         for (int i = 0; i < tmp; i++)

186         {

187             if (F[i].ok)

188             {

189                 F[cnt++] = F[i];

190             }

191         }

192     }

193     //表面积

194     double area()

195     {

196         double ret = 0.0;

197         for (int i = 0; i < cnt; i++)

198         {

199             ret += area(P[F[i].a], P[F[i].b], P[F[i].c]);

200         }

201         return ret / 2.0;

202     }

203     double ptoface(point3 p,int i)

204     {

205         return fabs(volume(P[F[i].a],P[F[i].b],P[F[i].c],p)/vlen((P[F[i].b]-P[F[i].a])*(P[F[i].c]-P[F[i].a])));

206     }

207     //体积

208     double volume()

209     {

210         point3 O(0, 0, 0);

211         double ret = 0.0;

212         for (int i = 0; i < cnt; i++)

213         {

214             ret += volume(O, P[F[i].a], P[F[i].b], P[F[i].c]);

215         }

216         return fabs(ret / 6.0);

217     }

218     //表面三角形数

219     int facetCnt_tri()

220     {

221         return cnt;

222     }

223 

224     //表面多边形数

225     int facetCnt()

226     {

227         int ans = 0;

228         for (int i = 0; i < cnt; i++)

229         {

230             bool nb = 1;

231             for (int j = 0; j < i; j++)

232             {

233                 if(same(i, j))

234                 {

235                     nb = 0;

236                     break;

237                 }

238             }

239             ans += nb;

240         }

241         return ans;

242     }

243 

244 } hull;

245 point3 get_point(point3 st,point3 ed,point3 tp)//tp在直线st-en上的垂足

246 {

247     double t1=(tp-st)^(ed-st);

248     double t2=(ed-st)^(ed-st);

249     double t=t1/t2;

250     point3 tt = (ed-st)*t;

251     point3 ans=st + tt;

252     return ans;

253 }

254 point3 rotate(point3 st,point3 ed,point3 tp,double A)//将点tp绕st-ed逆时针旋转A度  从ed往st看为逆时针

255 {

256     point3 root=get_point(st,ed,tp);

257     point3 e=(ed-st)/hull.vlen(ed-st);

258     point3 r=tp-root;

259     point3 vec=e*r;

260     point3 ans=r*cos(A)+vec*sin(A)+root;

261     return ans;

262 }

263 int dcmp(double x)

264 {

265     if(fabs(x)<eps) return 0;

266     return x<0?-1:1;

267 }

268 double cross(point a,point b)

269 {

270     return a.x*b.y-a.y*b.x;

271 }

272 double mul(point p0,point p1,point p2)

273 {

274     return cross(p1-p0,p2-p0);

275 }

276 double dis(point a)

277 {

278     return sqrt(a.x*a.x+a.y*a.y);

279 }

280 bool cmp(point a,point b)

281 {

282     if(dcmp(mul(p[0],a,b))==0)

283         return dis(a-p[0])<dis(b-p[0]);

284     else

285         return dcmp(mul(p[0],a,b))>0;

286 }

287 double Polyarea(int n,point p[])

288 {

289     double area = 0;

290     for(int i = 1 ; i < n-1 ; i++)

291         area+=cross(p[i]-p[0],p[i+1]-p[0]);

292     return fabs(area)/2;

293 }

294 int Graham(int n)

295 {

296     int i,k = 0,top;

297     point tmp;

298     for(i = 0 ; i < n; i++)

299     {

300         if(p[i].y<p[k].y||(p[i].y==p[k].y&&p[i].x<p[k].x))

301             k = i;

302     }

303     if(k!=0)

304     {

305         tmp = p[0];

306         p[0] = p[k];

307         p[k] = tmp;

308     }

309     sort(p+1,p+n,cmp);

310     ch[0] = p[0];

311     ch[1] = p[1];

312     top = 1;

313     for(i = 2; i < n ; i++)

314     {

315         while(top>0&&dcmp(mul(ch[top-1],ch[top],p[i]))<0)

316             top--;

317         top++;

318         ch[top] = p[i];

319     }

320     return top;

321 }

322 void solve()

323 {

324     int i,j;

325     double h = 0,sa = INF;

326     int cnt = hull.cnt,n = hull.n;

327     for(i = 0; i < cnt ; i++)

328     {

329         for(j = 0 ; j < n; j++)

330             rp[j] = hull.P[j];//rp数组为待旋转点

331 

332         point3 p1 = (rp[hull.F[i].b]-rp[hull.F[i].a])*(rp[hull.F[i].c]-rp[hull.F[i].a]);//平面的法向量,注意法向量的方向。

333         point3 e = point3(0,0,1);//z轴上的向量

334         point3 vec = p1*e;//垂直于p1和e的向量,即所有点将要绕其旋转的向量

335 

336         double A = p1^e/hull.vlen(p1);

337         A = acos(A); //p1与e的夹角

338 

339         if(dcmp(A)!=0&&dcmp(A-pi)!=0)

340         {

341             point3 p0 = point3(0,0,0);

342             for(j = 0 ; j < n; j++)

343                 rp[j] = rotate(p0,vec,rp[j],A);//绕直线p0-vec旋转

344         }

345         double tt = rp[hull.F[i].a].z;

346         for(j = 0 ; j < n; j++)

347             rp[j].z-=tt;

348         double th = 0,ts;

349         for(j = 0 ; j < n; j++)

350         {

351             th = max(th,hull.ptoface(hull.P[j],i));

352         }

353         for(j = 0 ; j< n; j++)

354         {

355             p[j].x = rp[j].x;

356             p[j].y = rp[j].y;

357         }

358         int m = Graham(n);

359         ch[++m] = ch[0];

360 

361         ts = Polyarea(m,ch);//cout<<ts<<endl;

362         if(dcmp(th-h)>0||(dcmp(th-h)==0&&dcmp(ts-sa)<0))

363         {

364             h = th;

365             sa = ts;

366         }

367     }

368     printf("%.3f %.3f\n",h,sa);

369 }

370 int main()

371 {

372     int n,i;

373     while(scanf("%d",&n)&&n)

374     {

375         hull.n = n;

376         for(i = 0 ; i < n; i++)

377         {

378             scanf("%lf%lf%lf",&pp[i].x,&pp[i].y,&pp[i].z);

379             hull.P[i] = pp[i];

380         }

381         hull.construct();

382         solve();

383     }

384 }
View Code

 

你可能感兴趣的:(design)