Codeforces Round 896 (Div. 1) C. Travel Plan(树形dp+组合数学)

题目

有一棵n(1<=n<=1e18)个点的树,

点i连着2*i和2*i+1两个点,构成一棵完全二叉树

对于每个点i,记其值为a[i],a[i]可以取[1,m](1<=m<=1e5)的整数

记i到j的简单路径上的最大值为s[i][j],

则一棵权值确定的树对答案的贡献是\sum_{i=1}^{n}\sum_{j=i+1}^{n}s[i][j]

现在求所有可能情况下的树的贡献之和,答案对998244353取模

实际t<=200组样例,但保证summ不超过1e5

思路来源

羊村群小羊

题解

大致的思路就是把每个长度的路径都统计算出来,然后再算贡献

而n个点的树总是可以拆成左子树和右子树继续递归下去的,有子结构的概念

所以可以按子树大小做记忆化,每棵子树暴力维护所有长度的路径进行合并

由于路径长度最长2*logn,这里固定开了128长度的vector,只对这些做合并

dp[i][2]表示当前节点u的子树长度为i的路径的条数

其中dp[i][0]表示两端都位于子树内部的路径,dp[i][1]表示有一端位于根节点的路径

求出路径方案数后求贡献,最大值为i的方案数,首先特判i=1,

然后稍作容斥,方案数等于m个值从[1,i]任取减去m个值从[1,i-1]任取

长为i的路径的方案数*剩下n-i个点任取的方案数*最大值为j的方案数*最大值j,

就是当路径长度为i,而最大值为j时,(i,j)对答案的贡献,统计所有贡献累加即可

心得

int k = std::__lg(n + 1);
ll ls=((1LL << (k - 1)) - 1) + std::min(1LL << (k - 1), n - (1LL << k) + 1);
ll rs=n-1-ls;

求左子树大小这里,抄了一下jiangly的代码,但后来想了想也很好理解

对于倒数第二层往上,是左右子树平分的

而对于最后一层,左子树能拿到的大小,为min(剩下的点数,最后一层的一半)

代码

#include
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
#define per(i,a,b) for(int i=(a);i>=(b);--i)
typedef long long ll;
typedef double db;
typedef array P;
#define fi first
#define se second
#define pb push_back
#define dbg(x) cerr<<(#x)<<":"<>mp;//dp[i][2]表示是否开口的方案数
void add(int &x,int y){
	x=(x+y)%mod;
}
vector

dfs(ll n){ if(n==0)return vector

(1,{0,0}); if(n==1)return vector

(1,{0,1}); if(mp.count(n))return mp[n]; int k = std::__lg(n + 1); ll ls=((1LL << (k - 1)) - 1) + std::min(1LL << (k - 1), n - (1LL << k) + 1); ll rs=n-1-ls; vector

l=dfs(ls),r=dfs(rs); int sl=SZ(l),sr=SZ(r); //printf("n:%lld lsz:%d rsz:%d\n",n,sl,sr); vector

dp(128,{0,0}); rep(i,0,sl-1){ rep(j,0,sr-1){ if(!l[i][1] || !r[j][1])continue; add(dp[i+j+2][0],1ll*l[i][1]*r[j][1]%mod); } } rep(i,0,sl-1){ add(dp[i][0],l[i][0]); add(dp[i][0],l[i][1]); add(dp[i+1][1],l[i][1]); } rep(i,0,sr-1){ add(dp[i][0],r[i][0]); add(dp[i][0],r[i][1]); add(dp[i+1][1],r[i][1]); } add(dp[0][1],1); return mp[n]=dp; } int modpow(int x,ll n,int mod){ if(!n)return 1; int res=1; for(;n;n>>=1,x=1ll*x*x%mod){ if(n&1)res=1ll*res*x%mod; } return res; } int cal(int sz,int v){ if(v==1)return 1; return (pw[v][sz]-pw[v-1][sz]+mod)%mod; } int sol(){ vector

dp=dfs(n); int sz=SZ(dp),res=0; rep(j,0,sz-1){ int cnt=(dp[j][0]+dp[j][1])%mod,len=j+1; if(len>n)break; int oth=modpow(m,n-len,mod)%mod; rep(i,1,m){ add(res,1ll*cnt*cal(len,i)%mod*i%mod*oth%mod); } } return res; } int main(){ rep(i,1,N-1){ pw[i][0]=1; rep(j,1,M-1){ pw[i][j]=1ll*pw[i][j-1]*i%mod; } } sci(t); while(t--){ scanf("%lld%d",&n,&m); printf("%d\n",sol()); } return 0; }

你可能感兴趣的:(组合数学(容斥原理),#,树形dp/换根dp/长链剖分,组合数学,树形dp)