各位读者好, 我是小陈, 这是我的个人主页
小陈还在持续努力学习编程, 努力通过博客输出所学知识
如果本篇对你有帮助, 烦请点赞关注支持一波, 感激不尽
希望我的专栏能够帮助到你:
JavaSE基础: 基础语法, 类和对象, 封装继承多态, 接口, 综合小练习图书管理系统等
Java数据结构: 顺序表, 链表, 堆, 二叉树, 二叉搜索树, 哈希表等
JavaEE初阶: 多线程, 网络编程, TCP/IP协议, HTTP协议, Tomcat, Servlet, Linux, JVM等(正在持续更新)
记录力扣数据结构入门OJ题
提示:本人是正在努力进步的小菜鸟,不喜勿喷~,如有大佬发现某题有更妙的解法和思路欢迎提出讨论~
OJ链接
利用 HashSet 可以去重的功能, new 一个hashSet , 遍历数组, 如果 hashSet 中不存在该数据, add; 如果存在, 返回 true;
class Solution {
public boolean containsDuplicate(int[] nums) {
Set<Integer> hashSet = new HashSet<>();
for(int x : nums) {
if(!hashSet.contains(x)) {
hashSet.add(x);
}else {
return true;
}
}
return false;
}
}
时间复杂度: O(N) 需遍历数组长度
空间复杂度: O(N) 需创建数组长度为N的哈希表
动态规划问题
class Solution {
public int maxSubArray(int[] nums) {
int ret = nums[0];// 取列表中最大值
for(int i = 1; i < nums.length; i++) {
// 前一个数据 > 0 时, 把前一个数据加到当前数据上, 返回列表中最大值
if(nums[i - 1] > 0) {
nums[i] += nums[i - 1];
}
ret = Math.max(ret, nums[i]);
}
return ret;
}
}
时间复杂度: O(N) // 遍历数组
空间复杂度: O(1)
OJ链接
哈希表
class Solution {
public int[] twoSum(int[] nums, int target) {
int[] ret = new int[2];
Map<Integer, Integer> hashMap = new HashMap<>();
for(int i = 0; i < nums.length; i++){
hashMap.put(i,nums[i]); // (下标, 值)
}
Set<Map.Entry<Integer,Integer>> set = hashMap.entrySet();
// 转化成Entry
for(Map.Entry<Integer,Integer> entry1 : set) {
for(Map.Entry<Integer,Integer> entry2 : set) {
// 遍历set, 保证两个entry的key值不同时,且value值相加得target
if(entry1.getValue() + entry2.getValue() == target &&
(entry1.getKey() != entry2.getKey())) {
ret[0] = entry1.getKey();
ret[1] = entry2.getKey();
return ret;
}
}
}
return ret;
}
}
这个方法时间效率太低了, 时间复杂度是O(N^2) 空间复杂度是O(N), 优化后如下
class Solution {
public static int[] twoSum(int[] nums, int target) {
int[] ret = new int[2];
Map<Integer, Integer> treeMap = new TreeMap<>();
for(int i = 0; i < nums.length; i++){
// target和当前数据的差
int difference = target - nums[i];
// 放入当前数据前查看map中是否存在插值, 存在就返回
if (treeMap.containsKey(difference)) {
// 找到了另一个数
ret[0] = treeMap.get(difference);
ret[1] = i;
return ret;
}
// 把数据和下标放入map中
treeMap.put(nums[i],i); // (值, 下标)
}
return ret;
}
}
时间复杂度: O(N)
空间复杂度: O(N)
OJ链接
逆向双指针
从后往前放入nums1中(nums1后半部分是空的, 所以从后放不会覆盖前面的数据)
谁大谁放
结束条件为 j 把nums2遍历完
由于 i j 遍历的过程中一直在比较, 所以能够保证nums1中越靠后的数据越大
class Solution {
public void merge(int[] nums1, int m, int[] nums2, int n) {
int i = m-1;// nums1的指针
int j = n-1;// nums2的指针
int k = m+n-1;
while(j >= 0){
// 从后往前放
if(i >= 0 && nums1[i] > nums2[j] ) {
nums1[k] = nums1[i];
i--;
k--;
}else{
nums1[k] = nums2[j];
j--;
k--;
}
}
}
}
时间复杂度:O(M + N) // 双指针遍历数组
空间复杂度:O(1)
OJ链接
哈希表
public class Intersect {
public int[] intersect(int[] nums1, int[] nums2) {
int[] ret = null;
Map<Integer, Integer> hashMap = new HashMap<>();
ArrayList<Integer> list = new ArrayList<>();
for(int i = 0; i < nums1.length ; i++) {
if(hashMap.containsKey(nums1[i]) ) {
// 如果已经存在这个值, 让它的value值+1
hashMap.put(nums1[i], hashMap.get(nums1[i]) + 1);
}else {
// 如果不存在, 放入这个值
hashMap.put(nums1[i], 1);
}
}
for(int i = 0; i < nums2.length; i++) {
if(hashMap.containsKey(nums2[i]) && hashMap.get(nums2[i]) > 0) {
// 如果nums1中存在当前值(value值 > 0视为存在)
hashMap.put(nums2[i], hashMap.remove(nums2[i]) - 1);
list.add(nums2[i]);
}
}
// 转化成数组
ret = new int[list.size()];
for(int i = 0; i < ret.length; i++) {
ret[i] = list.get(i);
}
return ret;
}
}
OJ链接
动态规划
public class MaxProfit {
public int maxProfit(int[] prices) {
int minPrices = Integer.MAX_VALUE;
int difference = 0;
for(int i = 0; i < prices.length; i++) {
if(prices[i] < minPrices) {
minPrices = prices[i];
}else {
// 找到差值最大的情况
difference = Math.max(prices[i] - minPrices, difference);
}
}
return difference;
}
}
OJ链接
核心思想: 遍历, 把数据的一维数组下标, 映射到二维数组中
class Solution {
public int[][] matrixReshape(int[][] mat, int r, int c) {
int[][] ret = new int[r][c];
int row = mat.length; // 行数
int column = mat[0].length; // 列数
if(mat == null || row * column != r * c) {
return mat;
}
// 二维数组用一维表示
for(int i = 0; i < row * column; i++) {
ret[i/c][i%c] = mat[i/column][i%column];
}
return ret;
}
}
时间复杂度 : O(M*N)
空间复杂度 : O(1)
OJ链接
class Solution {
public List<List<Integer>> generate(int numRows) {
List<List<Integer>> ret = new ArrayList<>();
List<Integer> firstColumn = new ArrayList<>();
// 第一行
firstColumn.add(1);
ret.add(firstColumn);
int i = 1;
while(i < numRows) {
// 第一个1
List<Integer> prev = ret.get(i - 1);
List<Integer> column = new ArrayList<>();
column.add(1);
// 中间数
int j = 1;
while(j < i) {
column.add(prev.get(j -1) + prev.get(j));
j++;
}
// 最后一个1
column.add(1);
ret.add(column);
i++;
}
return ret;
}
}
OJ链接
public boolean isValidSudoku(char[][] board) {
int[][] row = new int[9][9];
int[][] column = new int[9][9];
int[][] Box = new int[9][9];
for(int i = 0; i < 9; i++) {
for(int j = 0; j < 9; j++) {
if(board[i][j] != '.') {
int val = board[i][j] - '0';
if(row[i][val - 1] != 0 || column[val - 1][j] != 0) {
// 说明这一行或这一列已经有过此数据,返回false
return false;
}
if(Box[(i/3) * 3 + j/3][val - 1] != 0) {
// 说明九宫格内已经有过此数据, 返回false
return false;
}
row[i][val - 1] = val;
column[val - 1][j] = val;
Box[(i/3) * 3 + j/3][val - 1] = val;
}
}
}
return true;
}
OJ链接
public void setZeroes(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
Queue<Integer> queue = new LinkedList<>();
for(int i = 0; i < m; i++) {
for(int j = 0; j < n; j++) {
if(matrix[i][j] == 0) {
queue.offer(i * n + j);
}
}
}
while(!queue.isEmpty()) {
int num = queue.poll();
for(int i = 0; i < n; i++) {
matrix[num / n][i] = 0;
}
for(int j = 0; j < m; j++) {
matrix[j][num % n] = 0;
}
}
}
OJ链接
public int firstUniqChar1(String s) {
int len = s.length();
Map<Character, Integer> hashMap = new HashMap<>();
for(int i = 0; i < len; i++) {
char ch = s.charAt(i);
if(hashMap.containsKey(ch)) {
int num = hashMap.remove(ch);
hashMap.put(ch, num + 1);
}else {
hashMap.put(ch,1);
}
}
for(int j = 0; j < len; j++) {
if(hashMap.get(s.charAt(j)) == 1) {
return j;
}
}
return -1;
}
public int firstUniqChar2(String s) {
int len = s.length();
for(int i = 0; i < len; i++) {
if(s.indexOf(s.charAt(i)) == s.lastIndexOf(s.charAt(i))) {
return i;
}
}
return -1;
}
OJ链接
public boolean canConstruct(String ransomNote, String magazine) {
Map<Character, Integer> hashMap = new HashMap<>();
for(int i = 0; i < ransomNote.length(); i++) {
char ch = ransomNote.charAt(i);
hashMap.put(ch, hashMap.getOrDefault(ch, 0) + 1);
}
for(int j = 0; j < magazine.length(); j++) {
char ch = magazine.charAt(j);
if( hashMap.containsKey(ch) && hashMap.get(ch) > 0) {
hashMap.put(ch, hashMap.get(ch) - 1);
if(hashMap.get(ch) ==0 ) {
hashMap.remove(ch);
}
if(hashMap.size() == 0) {
return true;
}
}
}
return false;
}
代码优化1:
for (int i = 0; i < t.length(); i++) {
char ch = t.charAt(i);
table.put(ch, table.getOrDefault(ch, 0) - 1);
if (table.get(ch) < 0) {
return false;
}
}
代码优化2:
public boolean isAnagram3(String s, String t) {
if (s.length() != t.length()) {
return false;
}
char[] str1 = s.toCharArray();
char[] str2 = t.toCharArray();
Arrays.sort(str1);
Arrays.sort(str2);
return Arrays.equals(str1, str2);
}
哈希或者双指针
OJ链接
public boolean hasCycle(ListNode head) {
ListNode fast = head;
ListNode slow = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
if (fast == slow) {
return true;
}
}
return false;
}
OJ链接
public ListNode mergeTwoLists(ListNode list1, ListNode list2) {
ListNode pHead = new ListNode(-1);
ListNode prev = pHead;
while(list1 != null && list2 != null) {
if(list1.val <= list2.val) {
prev.next = list1;
list1 = list1.next;
prev = prev.next;
}else {
prev.next = list2;
list2 = list2.next;
prev = prev.next;
}
}
prev.next = list1 == null ? list2 : list1;
return pHead.next;
}
OJ链接
public ListNode removeElements(ListNode head, int val) {
if(head == null) {
return null;
}
ListNode newHead = head;
ListNode cur = head;
ListNode curPrev = null;
while(cur != null) {
if(cur.val == val) {
if(cur == newHead) {
newHead = newHead.next;
}else {
curPrev.next = cur.next;
cur = curPrev.next;
continue;
}
}
curPrev = cur;
cur = cur.next;
}
return newHead;
}
遍历一次链表, 依次头插即可
public ListNode reverseList(ListNode head) {
if(head == null) {
return null;
}
ListNode cur = head;
ListNode newHead = cur;
while(cur.next != null) {
ListNode curNext = cur.next;
cur.next = curNext.next;
curNext.next = newHead;
newHead = curNext;
}
return newHead;
}
注意: 重复数据连续出现的次数可能不止有两次, 所以删除重复数据操作需要while循环
public ListNode deleteDuplicates(ListNode head) {
if(head == null) {
return null;
}
ListNode cur = head;
while(cur != null && cur.next != null ) {
ListNode curNext = cur.next;
while (curNext != null && cur.val == curNext.val){
cur.next = curNext.next;
curNext = cur.next;
}
cur = cur.next;
}
return head;
}
OJ链接
// 有效的括号匹配
public boolean isValid(String s) {
Deque<Character> stack = new ArrayDeque<>();
// 遍历字符串
for (int i = 0; i < s.length(); i++) {
char ch = s.charAt(i);
// 如果是左括号就压栈
if (ch == '(' || ch == '[' || ch == '{') {
stack.push(ch);
}
//如果是右括号
if (ch == ')' || ch == ']' || ch == '}') {
// 如果栈为空,说明没有对应的左括号,直接返回false
if (stack.isEmpty()) {
return false;
}
// 栈不为空的情况
char ch2 = stack.peek();
if ((ch == ')' && ch2 == '(') || (ch == ']' && ch2 == '[')
|| (ch == '}' && ch2 == '{')) {
stack.pop();
}else {
// 不匹配,返回false
return false;
}
}
}
return stack.isEmpty();
}
OJ链接
// 用栈实现队列
Deque<Integer> stack1 ;
Deque<Integer> stack2;
public MyQueue() {
stack1 = new ArrayDeque<>();
stack2 = new ArrayDeque<>();
}
public void push(int x) {
stack1.push(x);
}
public int pop() {
// 必须保证第二个栈为空时才能入栈
if (stack2.isEmpty()) {
while (!stack1.isEmpty()) {
stack2.push(stack1.pop());
}
}
return stack2.pop();
}
public int peek() {
// 必须保证第二个栈为空时才能入栈
if (stack2.isEmpty()) {
while (!stack1.isEmpty()) {
stack2.push(stack1.pop());
}
}
return stack2.peek();
}
public boolean empty() {
return stack1.isEmpty() && stack2.isEmpty();
}
OJ链接
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> ret = new ArrayList<>();
if(root == null) {
return ret;
}
Deque<TreeNode> stack = new ArrayDeque<>();
TreeNode cur = root;
while (cur != null || !stack.isEmpty()) {
while(cur != null) {
stack.push(cur);
ret.add(cur.val);
cur = cur.left;
}
cur = stack.pop();
cur = cur.right;
}
return ret;
}
OJ链接
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> ret = new ArrayList<>();
if(root == null) {
return ret;
}
Deque<TreeNode> stack = new ArrayDeque<>();
TreeNode cur = root;
while (cur != null || !stack.isEmpty()) {
while(cur != null) {
stack.push(cur);
cur = cur.left;
}
cur = stack.pop();
ret.add(cur.val);
cur = cur.right;
}
return ret;
}
OJ链接
public List<Integer> postorderTraversal(TreeNode root) {
List<Integer> ret = new ArrayList<>();
if(root == null) {
return ret;
}
Deque<TreeNode> stack = new ArrayDeque<>();
TreeNode cur = root;
TreeNode tmp = null;
while (cur != null || !stack.isEmpty()) {
while(cur!=null) {
stack.push(cur);
cur = cur.left;
}
TreeNode top = stack.peek();
if(top.right == null || top.right == tmp) {
ret.add(top.val);
tmp = stack.pop();
}else {
cur = top.right;
}
}
return ret;
}
OJ链接
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> list = new ArrayList<>();
if(root == null) {
return list;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
List<Integer> inList = new ArrayList<>();
int size = queue.size();
while (size > 0) {
TreeNode node = queue.poll();
inList.add(node.val);
size--;
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
list.add(inList);
}
return list;
}
OJ链接
public int maxDepth(TreeNode root) {
if(root == null) {
return 0;
}
if(root.left == null && root.right == null) {
return 1;
}
int leftDepth = maxDepth(root.left);
int rightDepth = maxDepth(root.right);
return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
}
OJ链接
public boolean isSymmetric(TreeNode root) {
if (root == null ) {
return true;
}
return isSymmetricChild(root.left, root.right);
}
public boolean isSymmetricChild(TreeNode leftRoot, TreeNode rightRoot) {
if(leftRoot == null && rightRoot != null ||
leftRoot!=null && rightRoot == null) {
return false;
}
if(leftRoot == null && rightRoot == null) {
return true;
}
if(leftRoot.val != rightRoot.val) {
return false;
}
return isSymmetricChild(leftRoot.left, rightRoot.right)&&
isSymmetricChild(leftRoot.right, rightRoot.left);
}
OJ链接
public TreeNode invertTree(TreeNode root) {
if(root == null ) {
return null;
}
TreeNode tmp = root.right;
root.right = root.left;
root.left = tmp;
invertTree(root.left);
invertTree(root.right);
return root;
}
OJ链接
public boolean hasPathSum(TreeNode root, int targetSum) {
if(root == null) {
return false;
}
targetSum -= root.val;
// 走到头的情况, 判断sum是否等于0
if(root.left == null && root.right == null) {
if(targetSum == 0) {
return true;
}else {
return false;
}
}
boolean hasLeft = hasPathSum(root.left, targetSum);
boolean hasRight = hasPathSum(root.right, targetSum);
return hasLeft || hasRight;
}
OJ链接
public TreeNode searchBST(TreeNode root, int val) {
if(root == null) {
return null;
}
TreeNode cur = root;
while(cur != null) {
if(val > cur .val) {
cur = cur.right;
}else if(val == cur.val) {
return cur;
}else {
cur = cur.left;
}
}
return null;
}
OJ链接
public TreeNode insertIntoBST(TreeNode root, int val) {
if(root == null) {
return new TreeNode(val);
}
TreeNode cur = root;
TreeNode curParent = null;
while(cur != null) {
curParent = cur;
if(val > cur.val) {
cur = curParent.right;
}else {
cur = curParent.left;
}
}
if(val > curParent.val) {
curParent.right = new TreeNode(val);
}
if(val < curParent.val){
curParent.left = new TreeNode(val);
}
return root;
}
OJ链接
中序遍历每一个结点, 放入list中, 然后再遍历list检查是否有序
public boolean isValidBST(TreeNode root) {
List<Integer> list = new ArrayList<>();
preOrder(root, list);
return check(list);
}
public void preOrder(TreeNode root, List<Integer> list) {
if(root == null) {
return;
}
preOrder(root.left, list);
list.add(root.val);
preOrder(root.right, list);
}
public boolean check(List<Integer> list) {
for(int i = 1; i < list.size(); i++) {
if(list.get(i-1) >= list.get(i)) {
return false;
}
}
return true;
}
方法2, 利用LinkedList(底层是双向链表), 递归进行中序遍历, 每遍历到一个结点之前判断链表尾结点的val是否比当前结点的val值小
public boolean isValidBST(TreeNode root) {
LinkedList<Integer> list = new LinkedList<>();
return inOrder(root, list);
}
public boolean inOrder(TreeNode root, LinkedList<Integer> list) {
if(root == null) {
return true;
}
boolean bLeft = inOrder(root.left, list);
// 两种情况需要尾插
// 1,第一次插入 2,到目前为止中序遍历序列有序
// 否则直接返回false
if(list.isEmpty() || (bLeft && list.getLast() < root.val)) {
list.add(root.val);
}else {
return false;
}
boolean bRight = inOrder(root.right, list);
return bLeft && bRight;
}
OJ链接
class Solution {
public boolean findTarget(TreeNode root, int k) {
Set<Integer> hashSet = new HashSet<>();
return inOrder(root, k, hashSet);
}
public boolean inOrder(TreeNode root, int k, Set<Integer> hashSet) {
if(root == null) {
return false;
}
boolean bLeft = inOrder(root.left, k, hashSet);
int ret = k - root.val;
if(hashSet.contains(ret) ) {
return true;
}
hashSet.add(root.val);
boolean bRight = inOrder(root.right, k, hashSet);
return bLeft || bRight;
}
OJ链接
左边找到返回该结点, 去右边找
三种情况 :
1, 左右只有一边不为空, 哪边不为空返回哪边
2, 左右都不为空, 返回当前结点
3, 左右都为空, 返回null
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(root == null) {
return null;
}
if(root.val == p.val || root.val == q.val) {
return root;
}
TreeNode leftRet = lowestCommonAncestor(root.left, p,q);
TreeNode rightRet = lowestCommonAncestor(root.right,p,q);
if(leftRet != null && rightRet == null) {
return leftRet;
}else if(rightRet != null && leftRet == null) {
return rightRet;
}else if(leftRet != null && rightRet != null) {
return root;
}
return null;
}