拟合线 |
||||
自旋的 拟合函数(没有数学意义) |
参数:0.627,3.336,0.603,-3.234 |
P1-a.py
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
# 设置实验参数
Lambda = 1
Collision = 1000
np.random.seed(2)
New = np.zeros(Collision)
Path = 500
def mc_experiment():
global Lambda
global Collision
global New
Location = np.zeros((Collision,3))
d = np.zeros(Collision)
for i in range(1,Collision):
theta = np.random.uniform(0,np.pi)
phi = np.random.uniform(0,2*np.pi)
Location[i] = Location[i-1] + np.array([Lambda*np.sin(theta)*np.cos(phi),\
Lambda*np.sin(theta)*np.sin(phi),\
Lambda*np.cos(theta)])
Dis = np.array([sum(i**2)**0.5 for i in Location])
for i in range(Collision):
d[i] = (sum(Dis[:i]**2)/(i+1))**0.5
New[i] += d[i]/Path
#plt.plot(range(Collision),d/Lambda)
return Location
for i in range(Path):
l = mc_experiment()
print(i)
if i==49:
plt.plot(range(Collision),New/Lambda*10,label="path=50")
if i==99:
plt.plot(range(Collision),New/Lambda*5,label="path=100")
if i==249:
plt.plot(range(Collision),New/Lambda*2,label="path=250")
if i==499:
plt.plot(range(Collision),New/Lambda,label="path=500")
plt.legend()
plt.title("/lambda-collision")
plt.pause(0.01)
plt.savefig("1-a.jpg")
P1-b.py
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import pickle
# 设置实验参数
exceed = 0.1
Collision = 1000
np.random.seed(2)
New = np.zeros(Collision)
Path = 50
def mc_experiment():
global Lambda
global Collision
global New
global exceed
Location = np.zeros((Collision,3))
d = np.zeros(Collision)
for i in range(1,Collision):
theta = np.random.uniform(0,np.pi)
phi = np.random.uniform(0,2*np.pi)
Lambda = np.random.uniform(1-exceed,1+exceed)
Location[i] = Location[i-1] + np.array([Lambda*np.sin(theta)*np.cos(phi),\
Lambda*np.sin(theta)*np.sin(phi),\
Lambda*np.cos(theta)])
Dis = np.array([sum(i**2)**0.5 for i in Location])
for i in range(Collision):
d[i] = (sum(Dis[:i]**2)/(i+1))**0.5
New[i] += d[i]/Path
#plt.plot(range(Collision),d/Lambda)
for j in range(6):
for i in range(Path):
mc_experiment()
print(j,":",i)
plt.plot(range(Collision),New/(1+exceed),label=str(exceed))
f = open("./"+str(j)+".txt",'wb')
pickle.dump(New,f)
f.close()
New = np.zeros(Collision)
exceed += 0.1
plt.legend()
plt.title("/lambda-collision")
plt.pause(0.01)
plt.savefig("1-b.jpg")
P1-c.py
import pickle
Data = []
for i in range(6):
f = open("./"+str(i)+".txt",'rb')
Data.append(pickle.load(f))
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
#确定你想要的函数
def func(x,a,b,c,d):
return a * np.log(b*x) + c * x**0.5 + d
x_data = np.array(range(len(Data[0])))[1:]
y_data = Data[0][1:]
plt.title("curve_fit")
plt.plot(x_data,y_data,"r-.",label="raw data")
popt,pcov = curve_fit(func,x_data,y_data)
plt.plot(x_data,func(x_data,*popt),"b--",label="fit first")
plt.legend()
plt.pause(0.01)
plt.savefig("1-c")
print("popt 1",end=" ")
print(popt)
print("pcov 1")
print(pcov)
P-M-1.py
import numpy as np
import matplotlib.pyplot as plt
lamda=1 #平均自由程-步长
N=1000 #总步数,即每次实验走N步
t = [i for i in range(1,N+1)]
def drms(m):
drms=[]
#计算均方根距离:
for i in range(1,N+1,1):
#3d-球坐标系,利用角参数\thata,\phi 描述其移动,走N步
r=np.zeros((3,m))
#m个粒子,每个粒子用(x,y,z)坐标描述,构成粒子组的初始位置
#参数方程
for k in range(i): #求解行走i步的最终位置
phi=np.random.uniform(0,2*np.pi,m)
#生成m个随机数
costheta=np.random.uniform(-1,1,m)
#生成m个随机数
r[0]=r[0]+lamda*np.sqrt(1-costheta**2)*np.cos(phi)
#粒子组的x坐标
r[1]=r[1]+lamda*np.sqrt(1-costheta**2)*np.sin(phi)
#粒子组y坐标
r[2]=r[2]+lamda*costheta
#粒子组z坐标
d = np.sum(np.reshape(r**2,((r**2).size)))
drms.append(np.sqrt(d/m))
#走i次对应的均方根距离
return drms
a = drms(50)
b = drms(500)
c = drms(5000)
plt.plot(t,a,'o',markersize='3',marker='+',label='50-paths',color='r')
plt.plot(t,b,'o',markersize='3',marker='*',label='500-paths',color='g')
plt.plot(t,c,'o',markersize='3',marker='x',label='5000-paths',color='b')
plt.xlabel('Number of collisions')
plt.ylabel('/lambda')
plt.plot(t,np.sqrt(t),label='Sqrt(N)',color = 'b')
plt.legend()
plt.show()
P-M-2.py
import numpy as np
import matplotlib.pyplot as plt
N=1000 #总步数,即每次实验走N步
t = [i for i in range(1,N+1)]
def drms(m,a):
drms=[]
#计算均方根距离:
for i in range(1,N+1,1):
#3d-球坐标系,利用角参数\thata,\phi 描述其移动,走N步
r=np.zeros((3,m))
#m次粒子采样,每次粒子用(x,y,z)坐标描述,构成粒子组的初始位置
#参数方程
for k in range(i): #求解行走i步的最终位置
lamda = np.random.uniform(a,2-a,1)
phi=np.random.uniform(0,2*np.pi,m)
#生成m个随机数
costheta=np.random.uniform(-1,1,m)
#生成m个随机数
r[0]=r[0]+lamda*np.sqrt(1-costheta**2)*np.cos(phi)
#粒子组的x坐标
r[1]=r[1]+lamda*np.sqrt(1-costheta**2)*np.sin(phi)
#粒子组y坐标
r[2]=r[2]+lamda*costheta
#粒子组z坐标
d = np.sum(np.reshape(r**2,((r**2).size)))
drms.append(np.sqrt(d/m))
return drms
a = drms(500,0.1)
b = drms(500,0.2)
c = drms(500,0.3)
d = drms(500,0.4)
e = drms(500,0.5)
f = drms(500,0.6)
g = drms(500,0.7)
h = drms(500,0.8)
i = drms(500,0.9)
plt.plot(t,a,'o',markersize='3',marker='+',label='0.1-1.9',color='r')
plt.plot(t,b,'o',markersize='3',marker='*',label='0.2-1.8',color='g')
plt.plot(t,c,'o',markersize='3',marker='x',label='0.3-1.7',color='b')
plt.plot(t,d,'o',markersize='3',marker='x',label='0.4-1.6',color='r')
plt.plot(t,e,'o',markersize='3',marker='+',label='0.5-1.5',color='g')
plt.plot(t,f,'o',markersize='3',marker='*',label='0.6-1.7',color='b')
plt.plot(t,g,'o',markersize='3',marker='*',label='0.7-1.3',color='r')
plt.plot(t,h,'o',markersize='3',marker='x',label='0.8-1.2',color='g')
plt.plot(t,i,'o',markersize='3',marker='+',label='0.9-1.1',color='b')
plt.xlabel('Number of collisions')
plt.ylabel('/lambda')
plt.plot(t,np.sqrt(t),label='Sqrt(N)',color = 'b')
plt.legend()
plt.show()
P3.py
import matplotlib.pyplot as plt
import numpy as np
import time
np.random.seed(0)
s = time.time()
N = 100000
N = int(N)
Num = 10000
Num = int(Num)
Choice = np.random.choice([-1,1],(N,Num))
Sum = sum(Choice[:,])
e = time.time()
print("time:",round(e-s,2))
##plt.hist(Sum,50)
##plt.title("Distribution of position")
##plt.savefig("Distribution of position.jpg")
##plt.pause(0.01)
Position = np.zeros(2061)
for i in range(-1030,1031):
Position[i] = len(np.where(Sum>i)[0])/Num
##plt.plot(range(1031),Position)
##plt.savefig("P3-c.jpg")
##plt.pause(0.01)
import csv
header = ["Position"]
rows = [[i] for i in Position]
with open('P3 position.csv','w',newline="") as file:
writer = csv.writer(file)
writer.writerow(header)
writer.writerows(rows)
从前面的图中可以看出,对于足够大的N,计算出的分布可以用高斯分布来近似
样本量 |
中位数 |
平均值 |
标准差 |
偏度 |
峰度 |
S-W检验 |
K-S检验 |
2061 |
0.502 |
0.5 |
0.405 |
-0.001 |
-1.713 |
0.829(0.000***) |
0.149(1.1e-40) |
P3-e.py
import matplotlib.pyplot as plt
import numpy as np
import time
np.random.seed(0)
s = time.time()
#step:N
N = 3000
N = int(N)
#repeat:Num
Num = 10000
Num = int(Num)
Choice = np.random.random((N,Num))
CHOICE = np.zeros((N,Num))
for i in range(N):
for j in range(Num):
if Choice[i][j] <= 0.7:
CHOICE[i][j] = 1
else:
CHOICE[i][j] = -1
Sum = sum(CHOICE[:,])
e = time.time()
print("time:",round(e-s,2))
plt.hist(Sum,50)
plt.title("Distribution of position-e")
plt.savefig("Distribution of position-e N3000.jpg")
plt.pause(0.01)
import csv
header = ["Position"]
rows = [[i] for i in Sum]
with open('P3-e position N3000.csv','w',newline="") as file:
writer = csv.writer(file)
writer.writerow(header)
writer.writerows(rows)
修改概率使得向正向移动概率为0.7
P3-f.py
import matplotlib.pyplot as plt
import numpy as np
import time
np.random.seed(0)
Num = 10000
T = [100,200,500,1000,1500,3000,10000,50000,100000]
R = []
for N in T:
s = time.time()
Choice = np.random.choice([-1,1],(N,Num))
Sum = sum(Choice[:,])
R.append(sum(Sum**2)/Num)
e = time.time()
print("time:",round(e-s,2))
plt.loglog(T,R)
plt.title("log-log E(x^2)-Num")
plt.savefig("P3-f-2.jpg")
plt.pause(0.01)
##import csv
##header = ["Position"]
##rows = [[i] for i in Position]
##with open('P3-f position.csv','w',newline="") as file:
## writer = csv.writer(file)
## writer.writerow(header)
## writer.writerows(rows)
走N步,轴上移动的距离为X
Flory exponent.py
##Flory exponent 是描述聚合物空间构型的一种指标,
##其值越大表明聚合物链越趋于伸展状态,反之则趋于卷曲状态。
##
##在随机游走模型中,
##可以通过生成随机步长并多次重复步骤来模拟聚合物链的构型演化。
##通过计算链的端到端距离 $R$ 与聚合物链长度 $N$ 之间的关系,可以得到 Flory exponent $v$ 的估计值。
##
import numpy as np
num_walks = 100 # 模拟次数
max_steps = 100 # 聚合物链长度
step_size = 1 # 随机步长
Rs = [] # 链的端到端距离列表
# 多次重复模拟
for i in range(num_walks):
positions = np.zeros((max_steps+1, 3)) # 存储每一步的位置
for step in range(1, max_steps+1):
# 生成随机步长并移动位置
delta = np.random.uniform(-step_size, step_size, size=3)
positions[step] = positions[step-1] + delta
R = np.linalg.norm(positions[-1] - positions[0]) # 计算链的端到端距离
Rs.append(R)
N = np.arange(1,max_steps+1)
v = np.polyfit(np.log(N), np.log(Rs), deg=1)[0] # 拟合直线斜率即为 Flory exponent
print(f"Flory exponent = {v:.3f}")
##这段代码使用了 NumPy 库来进行向量化计算,
##并通过多次模拟生成了随机游走聚合物链的构型。最后,使用最小二乘法拟合直线斜率来估计 Flory exponent 的值。
##
P4 forge.py
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(0)
Times1 = np.array([0.8,1.1,1.5,1.8,2.0,2.1,2.4])
Times2 = np.linspace(2.5,6,30)
D1 = 4/3*Times1
D2 = 4/3*Times2
plt.plot(Times1,D1,lw=2)
plt.plot(Times2,D2,lw=2)
noise1 = np.random.uniform(-0.1,0.1,7)
noise2 = np.random.uniform(-0.1,0.1,30)
D1 += noise1
D2 += noise2
plt.scatter(Times1,D1,s=3)
plt.scatter(Times2,D2,s=3)
plt.xlabel("Time")
plt.ylabel("$D^2$")
plt.title(" versus T for self avoiding walk in 2D")
plt.pause(0.01)
P4-a.py
import matplotlib.pyplot as plt
import numpy as np
import time
np.random.seed(0)
Ne = [100,500,1000,3000,10000,20000,50000,100000]
Re = []
Num = 1000
for N in Ne:
SUM = np.zeros(Num)
s = time.time()
for j in range(Num):
Choicex = np.random.choice([-1,1],N)
Choicey = np.random.choice([-1,1],N)
SUM[j] = sum(Choicex)**2 + sum(Choicey)**2
e = time.time()
print(round(e-s,2),"s")
Re.append(sum(SUM)/Num)
##plt.hist(SUM,50)
##plt.title("Distribution of position 2D sample")
##plt.pause(0.01)
v = np.polyfit(2*np.log(np.array(Ne)),np.log(Re),deg=1)[0] # 拟合直线斜率即为 Flory exponent
print("v:",v)
P4-b.py
import matplotlib.pyplot as plt
import numpy as np
import time
np.random.seed(0)
Num = 1000
Ne = [100,500,1000,3000,10000,20000,50000,100000]
Re = []
for N in Ne:
SUM = np.zeros(Num)
s = time.time()
for j in range(Num):
Choicex = np.random.choice([-1,1],N)
Choicey = np.random.choice([-1,1],N)
temp = np.random.random(N)
temp1 = np.where(temp>=0.5)[0]
temp2 = np.where(temp<0.5)[0]
SUM[j] = sum(Choicex[temp1])**2 + sum(Choicey[temp2])**2
e = time.time()
print(round(e-s,2),"s")
Re.append(sum(SUM)/Num)
NUM = np.arange(1,Num+1)
v = np.polyfit(2*np.log(np.array(Ne)),np.log(Re),deg=1)[0] # 拟合直线斜率即为 Flory exponent
print("v:",v)
##plt.hist(SUM,50)
##plt.title("Distribution of position 2D sample")
##plt.pause(0.01)
P4-图像绘制.py
import random
import turtle
count = 0#死点的计数
#判断是否走过
def Judge(xl,yl,listx,listy):
res=False
for i in range(len(listx)):
if xl==listx[i] and yl==listy[i]:#成对判断坐标是否已存在
res=True
return res
#判断是否死点
def Die(x,y,listx,listy):
x1=x+10
x2=x-10
y1=y-10
y2=y+10
Res=Judge(x1,y,listx,listy)&Judge(x2,y,listx,listy)&Judge(x,y1,listx,listy)&Judge(x,y2,listx,listy)
return Res
#地图可视化
def Map(size):
xs = -((size*10)//2)
turtle.pensize(1)
turtle.speed(10)
#纵坐标的线绘制
for y in range(-((size*10)//2),((size*10)//2)+1,10):
turtle.penup()
turtle.goto(xs,y)
turtle.pendown()
turtle.forward(size*10)
#横坐标线绘制
ys = ((size*10)//2)
turtle.right(90)
for x in range(-((size*10)//2),((size*10)//2)+1,10):
turtle.penup()
turtle.goto(x,ys)
turtle.pendown()
turtle.forward(size*10)
#路径绘制函数
def Draw(size):
global count
x = y = 0
listx=[0]
listy=[0]
#设定笔的属性
turtle.pensize(2)
turtle.speed(0)
turtle.color("red")
#模拟走动(是个方向等概率)
turtle.penup()
turtle.goto(0,0)
turtle.pendown()
while abs(x) < ((size*10)//2) and abs(y) < ((size*10)//2):
r = random.randint(0,3)#产生随机数,0右,1下,2左,3上表示是个方向
if Die(x,y,listx,listy):#判断死点
count+=1#计数
break
elif r == 0:#右
x += 10
if Judge(x,y,listx,listy):#判断是否为走过的点
x-=10 #是的话坐标不变
continue#终止本次循环
else:
listx.append(x)
listy.append(y)
turtle.setheading(0)
turtle.forward(10)
elif r == 1:#下
y -= 10
if Judge(x,y,listx,listy):
y+=10
continue
else:
listx.append(x)
listy.append(y)
turtle.setheading(270)
turtle.forward(10)
elif r == 2:#左
x -= 10
if Judge(x,y,listx,listy):
x+=10
continue
else:
listx.append(x)
listy.append(y)
turtle.setheading(180)
turtle.forward(10)
elif r == 3:#上
y += 10
if Judge(x,y,listx,listy):
y-=10
continue
else:
listx.append(x)
listy.append(y)
turtle.setheading(90)
turtle.forward(10)
#主程序部分
if __name__ == "__main__":
temp = 'a'
if temp=='a':
turtle.hideturtle()#隐藏画笔
Map(16)
Draw(16)
turtle.done()
elif temp=='b':
turtle.tracer(False)#隐藏动画效果
for i in range(10,51): #模拟地图规模变化
count=0#每次变化对死点计数器初始化
for j in range(0,10000):#10000次仿真训练
Draw(i)
turtle.reset()
print('For lattice of size ',i,', the probability of dead-end paths is ',count/100,'%')
else:
print('input error')
2D Sample Random Walk
拟合直线斜率 |
v: 0.5022164965587219 |
选取点 |
100,500,1000,3000,10000,20000,50000,100000 |
2D Traditional Random Walk
选取点 100,500,1000,3000,10000,20000,50000,100000
拟合直线斜率 v: 0.49883658055370034
2D Self-Avoiding Random Walk
选取点 Range(2,20)
拟合直线1斜率 v: 1.3074916500876987
拟合直线2斜率 v: 1.502393127(3/4*2)
For each of the method,give the N big enough:
2D Sample Random Walk |
2D Traditional Random Walk |
2D Self Avoiding Random Walk |
3,000 is enough (Error:1e-2) |
3,000 is enough (Error:1e-2) |
50 is enough (Error:1e-2) |
其实考虑到自封闭, 完全可以将self-avoiding random walk 控制在1e2-1e3上,不选1e1下只是不够精确而言。 (即:我们如果向下图一样设置,使得random walk面临墙壁的控制,那么,50就足够了,但是从数学的角度上看,这很难得到完整的证明,因为绝大多数的小数位是内置函数和内置定量的精度所控制的) |