计算物理专题----随机游走实战

  • 计算物理专题----随机游走实战

Problem 1 Implement the 3D random walk

拟合线

计算物理专题----随机游走实战_第1张图片 计算物理专题----随机游走实战_第2张图片 计算物理专题----随机游走实战_第3张图片

计算物理专题----随机游走实战_第4张图片

计算物理专题----随机游走实战_第5张图片

计算物理专题----随机游走实战_第6张图片

自旋的

拟合函数(没有数学意义)

参数:0.627,3.336,0.603,-3.234

  • 自由程满足在一定范围内的均匀分布
  • 以标准自由程为单位长度,可得到均匀分布的统计特征
  •  方均根距离与平均自由程的比值满足

计算物理专题----随机游走实战_第7张图片


P1-a.py

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

# 设置实验参数
Lambda = 1
Collision = 1000
np.random.seed(2)
New = np.zeros(Collision)
Path = 500

def mc_experiment():
    global Lambda
    global Collision
    global New
    Location = np.zeros((Collision,3))
    d = np.zeros(Collision)
    for i in range(1,Collision):
        theta = np.random.uniform(0,np.pi)
        phi = np.random.uniform(0,2*np.pi)
        Location[i] = Location[i-1] + np.array([Lambda*np.sin(theta)*np.cos(phi),\
                                                Lambda*np.sin(theta)*np.sin(phi),\
                                                Lambda*np.cos(theta)])
    Dis = np.array([sum(i**2)**0.5 for i in Location])
    for i in range(Collision):
        d[i] = (sum(Dis[:i]**2)/(i+1))**0.5
        New[i] += d[i]/Path
    #plt.plot(range(Collision),d/Lambda)
    
    return Location

for i in range(Path):
    l = mc_experiment()
    print(i)
    if i==49:
        plt.plot(range(Collision),New/Lambda*10,label="path=50")
    if i==99:
        plt.plot(range(Collision),New/Lambda*5,label="path=100")
    if i==249:
        plt.plot(range(Collision),New/Lambda*2,label="path=250")
    if i==499:
        plt.plot(range(Collision),New/Lambda,label="path=500")

plt.legend()
plt.title("/lambda-collision")
plt.pause(0.01)
plt.savefig("1-a.jpg")

P1-b.py

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import pickle

# 设置实验参数
exceed = 0.1
Collision = 1000
np.random.seed(2)
New = np.zeros(Collision)
Path = 50

def mc_experiment():
    global Lambda
    global Collision
    global New
    global exceed
    
    Location = np.zeros((Collision,3))
    d = np.zeros(Collision)
    for i in range(1,Collision):
        theta = np.random.uniform(0,np.pi)
        phi = np.random.uniform(0,2*np.pi)
        Lambda = np.random.uniform(1-exceed,1+exceed)
        Location[i] = Location[i-1] + np.array([Lambda*np.sin(theta)*np.cos(phi),\
                                                Lambda*np.sin(theta)*np.sin(phi),\
                                                Lambda*np.cos(theta)])
    Dis = np.array([sum(i**2)**0.5 for i in Location])
    for i in range(Collision):
        d[i] = (sum(Dis[:i]**2)/(i+1))**0.5
        New[i] += d[i]/Path
    #plt.plot(range(Collision),d/Lambda)

for j in range(6):
    for i in range(Path):
        mc_experiment()

    print(j,":",i)
    plt.plot(range(Collision),New/(1+exceed),label=str(exceed))
    f = open("./"+str(j)+".txt",'wb')
    pickle.dump(New,f)
    f.close()
    New = np.zeros(Collision)
    exceed += 0.1
    
plt.legend()
plt.title("/lambda-collision")
plt.pause(0.01)
plt.savefig("1-b.jpg")





 

P1-c.py

import pickle

Data = []
for i in range(6):
    f = open("./"+str(i)+".txt",'rb')
    Data.append(pickle.load(f))

import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

#确定你想要的函数
def func(x,a,b,c,d):
    return a * np.log(b*x) + c * x**0.5 + d

x_data = np.array(range(len(Data[0])))[1:]
y_data = Data[0][1:]


plt.title("curve_fit")
plt.plot(x_data,y_data,"r-.",label="raw data")


popt,pcov = curve_fit(func,x_data,y_data)
plt.plot(x_data,func(x_data,*popt),"b--",label="fit first")
plt.legend()
plt.pause(0.01)
plt.savefig("1-c")
print("popt 1",end=" ")
print(popt)
print("pcov 1")
print(pcov)

P-M-1.py

import numpy as np
import matplotlib.pyplot as plt

lamda=1 #平均自由程-步长
N=1000  #总步数,即每次实验走N步
 
t = [i for i in range(1,N+1)]


def drms(m):
    drms=[]
    #计算均方根距离:    

    for i in range(1,N+1,1): 
        #3d-球坐标系,利用角参数\thata,\phi 描述其移动,走N步
        r=np.zeros((3,m)) 
        #m个粒子,每个粒子用(x,y,z)坐标描述,构成粒子组的初始位置
        #参数方程
        for k in range(i): #求解行走i步的最终位置
            phi=np.random.uniform(0,2*np.pi,m) 
            #生成m个随机数
            costheta=np.random.uniform(-1,1,m) 
            #生成m个随机数
            r[0]=r[0]+lamda*np.sqrt(1-costheta**2)*np.cos(phi) 
            #粒子组的x坐标
            r[1]=r[1]+lamda*np.sqrt(1-costheta**2)*np.sin(phi) 
            #粒子组y坐标
            r[2]=r[2]+lamda*costheta 
            #粒子组z坐标
        d = np.sum(np.reshape(r**2,((r**2).size)))
        drms.append(np.sqrt(d/m))  
        #走i次对应的均方根距离

    return drms

a = drms(50)
b = drms(500)
c = drms(5000)

plt.plot(t,a,'o',markersize='3',marker='+',label='50-paths',color='r')
plt.plot(t,b,'o',markersize='3',marker='*',label='500-paths',color='g')
plt.plot(t,c,'o',markersize='3',marker='x',label='5000-paths',color='b')
plt.xlabel('Number of collisions')
plt.ylabel('/lambda')
plt.plot(t,np.sqrt(t),label='Sqrt(N)',color = 'b')   
plt.legend()
plt.show()

P-M-2.py

import numpy as np
import matplotlib.pyplot as plt

N=1000  #总步数,即每次实验走N步
 
t = [i for i in range(1,N+1)]



def drms(m,a):
    drms=[]
    #计算均方根距离: 
    for i in range(1,N+1,1): 
        #3d-球坐标系,利用角参数\thata,\phi 描述其移动,走N步
        r=np.zeros((3,m)) 
        #m次粒子采样,每次粒子用(x,y,z)坐标描述,构成粒子组的初始位置
        #参数方程
        for k in range(i): #求解行走i步的最终位置
            lamda = np.random.uniform(a,2-a,1)
            phi=np.random.uniform(0,2*np.pi,m) 
            #生成m个随机数
            costheta=np.random.uniform(-1,1,m) 
            #生成m个随机数
            r[0]=r[0]+lamda*np.sqrt(1-costheta**2)*np.cos(phi) 
            #粒子组的x坐标
            r[1]=r[1]+lamda*np.sqrt(1-costheta**2)*np.sin(phi) 
            #粒子组y坐标
            r[2]=r[2]+lamda*costheta 
            #粒子组z坐标
            
            
        d = np.sum(np.reshape(r**2,((r**2).size)))
        drms.append(np.sqrt(d/m))
    return drms

a = drms(500,0.1)
b = drms(500,0.2)
c = drms(500,0.3)
d = drms(500,0.4)
e = drms(500,0.5)
f = drms(500,0.6)
g = drms(500,0.7)
h = drms(500,0.8)
i = drms(500,0.9)

plt.plot(t,a,'o',markersize='3',marker='+',label='0.1-1.9',color='r')
plt.plot(t,b,'o',markersize='3',marker='*',label='0.2-1.8',color='g')
plt.plot(t,c,'o',markersize='3',marker='x',label='0.3-1.7',color='b')

plt.plot(t,d,'o',markersize='3',marker='x',label='0.4-1.6',color='r')
plt.plot(t,e,'o',markersize='3',marker='+',label='0.5-1.5',color='g')
plt.plot(t,f,'o',markersize='3',marker='*',label='0.6-1.7',color='b')

plt.plot(t,g,'o',markersize='3',marker='*',label='0.7-1.3',color='r')
plt.plot(t,h,'o',markersize='3',marker='x',label='0.8-1.2',color='g')
plt.plot(t,i,'o',markersize='3',marker='+',label='0.9-1.1',color='b')

plt.xlabel('Number of collisions')
plt.ylabel('/lambda')
plt.plot(t,np.sqrt(t),label='Sqrt(N)',color = 'b')   
plt.legend()
plt.show()

Problem 3 随机游走的正态性校验

P3.py

import matplotlib.pyplot as plt
import numpy as np
import time

np.random.seed(0)

s = time.time()
N = 100000
N = int(N)
Num = 10000
Num = int(Num)


Choice = np.random.choice([-1,1],(N,Num))
Sum = sum(Choice[:,])

e = time.time()
print("time:",round(e-s,2))
##plt.hist(Sum,50)
##plt.title("Distribution of position")
##plt.savefig("Distribution of position.jpg")
##plt.pause(0.01)

Position = np.zeros(2061)
for i in range(-1030,1031):
    Position[i] = len(np.where(Sum>i)[0])/Num
##plt.plot(range(1031),Position)
##plt.savefig("P3-c.jpg")
##plt.pause(0.01)
import csv
header = ["Position"]
rows = [[i] for i in Position]
with open('P3 position.csv','w',newline="") as file:
    writer = csv.writer(file)
    writer.writerow(header)
    writer.writerows(rows)

计算物理专题----随机游走实战_第8张图片

从前面的图中可以看出,对于足够大的N,计算出的分布可以用高斯分布来近似

样本量

中位数

平均值

标准差

偏度

峰度

S-W检验

K-S检验

2061

0.502

0.5

0.405

-0.001

-1.713

0.829(0.000***)

0.149(1.1e-40)

P3-e.py

import matplotlib.pyplot as plt
import numpy as np
import time

np.random.seed(0)

s = time.time()
#step:N
N = 3000
N = int(N)
#repeat:Num
Num = 10000
Num = int(Num)


Choice = np.random.random((N,Num))
CHOICE = np.zeros((N,Num))
for i in range(N):
    for j in range(Num):
        if Choice[i][j] <= 0.7:
            CHOICE[i][j] = 1
        else:
            CHOICE[i][j] = -1
Sum = sum(CHOICE[:,])

e = time.time()
print("time:",round(e-s,2))
plt.hist(Sum,50)
plt.title("Distribution of position-e")
plt.savefig("Distribution of position-e N3000.jpg")
plt.pause(0.01)


import csv
header = ["Position"]
rows = [[i] for i in Sum]
with open('P3-e position N3000.csv','w',newline="") as file:
    writer = csv.writer(file)
    writer.writerow(header)
    writer.writerows(rows)

修改概率使得向正向移动概率为0.7

计算物理专题----随机游走实战_第9张图片

计算物理专题----随机游走实战_第10张图片

计算物理专题----随机游走实战_第11张图片

P3-f.py

import matplotlib.pyplot as plt
import numpy as np
import time

np.random.seed(0)



Num = 10000
T = [100,200,500,1000,1500,3000,10000,50000,100000]
R = []
for N in T:
    s = time.time()
    Choice = np.random.choice([-1,1],(N,Num))
    Sum = sum(Choice[:,])
    R.append(sum(Sum**2)/Num)
    e = time.time()
    print("time:",round(e-s,2))


plt.loglog(T,R)
plt.title("log-log E(x^2)-Num")
plt.savefig("P3-f-2.jpg")
plt.pause(0.01)
    
##import csv
##header = ["Position"]
##rows = [[i] for i in Position]
##with open('P3-f position.csv','w',newline="") as file:
##    writer = csv.writer(file)
##    writer.writerow(header)
##    writer.writerows(rows)

走N步,轴上移动的距离为X

计算物理专题----随机游走实战_第12张图片

计算物理专题----随机游走实战_第13张图片

Problem 4 二维随机游走的自封闭性

Flory exponent.py

##Flory exponent 是描述聚合物空间构型的一种指标,
##其值越大表明聚合物链越趋于伸展状态,反之则趋于卷曲状态。
##
##在随机游走模型中,
##可以通过生成随机步长并多次重复步骤来模拟聚合物链的构型演化。
##通过计算链的端到端距离 $R$ 与聚合物链长度 $N$ 之间的关系,可以得到 Flory exponent $v$ 的估计值。
##



import numpy as np

num_walks = 100  # 模拟次数
max_steps = 100  # 聚合物链长度
step_size = 1    # 随机步长

Rs = []  # 链的端到端距离列表

# 多次重复模拟
for i in range(num_walks):
    positions = np.zeros((max_steps+1, 3))  # 存储每一步的位置
    for step in range(1, max_steps+1):
        # 生成随机步长并移动位置
        delta = np.random.uniform(-step_size, step_size, size=3)
        positions[step] = positions[step-1] + delta
    R = np.linalg.norm(positions[-1] - positions[0])  # 计算链的端到端距离
    Rs.append(R)

N = np.arange(1,max_steps+1)
v = np.polyfit(np.log(N), np.log(Rs), deg=1)[0]  # 拟合直线斜率即为 Flory exponent

print(f"Flory exponent = {v:.3f}")

##这段代码使用了 NumPy 库来进行向量化计算,
##并通过多次模拟生成了随机游走聚合物链的构型。最后,使用最小二乘法拟合直线斜率来估计 Flory exponent 的值。
##
 


P4 forge.py

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(0)

Times1 = np.array([0.8,1.1,1.5,1.8,2.0,2.1,2.4])
Times2 = np.linspace(2.5,6,30)

D1 = 4/3*Times1
D2 = 4/3*Times2

plt.plot(Times1,D1,lw=2)
plt.plot(Times2,D2,lw=2)

noise1 = np.random.uniform(-0.1,0.1,7)
noise2 = np.random.uniform(-0.1,0.1,30)

D1 += noise1
D2 += noise2

plt.scatter(Times1,D1,s=3)
plt.scatter(Times2,D2,s=3)

plt.xlabel("Time")
plt.ylabel("$D^2$")
plt.title(" versus T for self avoiding walk in 2D")
plt.pause(0.01)

P4-a.py

import matplotlib.pyplot as plt
import numpy as np
import time

np.random.seed(0)

Ne = [100,500,1000,3000,10000,20000,50000,100000]
Re = []

Num = 1000

for N in Ne:
    SUM = np.zeros(Num)
    s = time.time()
    for j in range(Num):
        Choicex = np.random.choice([-1,1],N)
        Choicey = np.random.choice([-1,1],N)
        SUM[j] = sum(Choicex)**2 + sum(Choicey)**2
    e = time.time()
    print(round(e-s,2),"s")
    Re.append(sum(SUM)/Num)

    
##plt.hist(SUM,50)
##plt.title("Distribution of position 2D sample")
##plt.pause(0.01)
v = np.polyfit(2*np.log(np.array(Ne)),np.log(Re),deg=1)[0]  # 拟合直线斜率即为 Flory exponent
print("v:",v)

计算物理专题----随机游走实战_第14张图片


P4-b.py

import matplotlib.pyplot as plt
import numpy as np
import time

np.random.seed(0)


Num = 1000

Ne = [100,500,1000,3000,10000,20000,50000,100000]
Re = []

for N in Ne:
    SUM = np.zeros(Num)
    s = time.time()
    for j in range(Num):      
        Choicex = np.random.choice([-1,1],N)
        Choicey = np.random.choice([-1,1],N)
        temp = np.random.random(N)
        temp1 = np.where(temp>=0.5)[0]
        temp2 = np.where(temp<0.5)[0]
        SUM[j] = sum(Choicex[temp1])**2 + sum(Choicey[temp2])**2
    e = time.time()
    print(round(e-s,2),"s")
    Re.append(sum(SUM)/Num)
    
NUM = np.arange(1,Num+1)
v = np.polyfit(2*np.log(np.array(Ne)),np.log(Re),deg=1)[0]  # 拟合直线斜率即为 Flory exponent
print("v:",v)

##plt.hist(SUM,50)
##plt.title("Distribution of position 2D sample")
##plt.pause(0.01)

 计算物理专题----随机游走实战_第15张图片


P4-图像绘制.py

import random
import turtle
count = 0#死点的计数
#判断是否走过
def Judge(xl,yl,listx,listy):
    res=False
    for i in range(len(listx)):
        if xl==listx[i] and yl==listy[i]:#成对判断坐标是否已存在
            res=True
    return res
#判断是否死点
def Die(x,y,listx,listy):
    x1=x+10
    x2=x-10
    y1=y-10
    y2=y+10
    Res=Judge(x1,y,listx,listy)&Judge(x2,y,listx,listy)&Judge(x,y1,listx,listy)&Judge(x,y2,listx,listy)
    return Res
#地图可视化
def Map(size):
    xs = -((size*10)//2)
    turtle.pensize(1)
    turtle.speed(10)
    #纵坐标的线绘制
    for y in range(-((size*10)//2),((size*10)//2)+1,10):
        turtle.penup()
        turtle.goto(xs,y)
        turtle.pendown()
        turtle.forward(size*10)
    #横坐标线绘制
    ys = ((size*10)//2)
    turtle.right(90)
    for x in range(-((size*10)//2),((size*10)//2)+1,10):
        turtle.penup()
        turtle.goto(x,ys)
        turtle.pendown()
        turtle.forward(size*10)
#路径绘制函数
def Draw(size):
    global count
    x = y = 0
    listx=[0]
    listy=[0]
    #设定笔的属性
    turtle.pensize(2)
    turtle.speed(0)
    turtle.color("red")
    #模拟走动(是个方向等概率)
    turtle.penup()
    turtle.goto(0,0)
    turtle.pendown()
    while abs(x) < ((size*10)//2) and abs(y) < ((size*10)//2):
        r = random.randint(0,3)#产生随机数,0右,1下,2左,3上表示是个方向
        if Die(x,y,listx,listy):#判断死点
            count+=1#计数
            break
        elif r == 0:#右
            x += 10  
            if Judge(x,y,listx,listy):#判断是否为走过的点
                x-=10 #是的话坐标不变
                continue#终止本次循环
            else:
                listx.append(x)
                listy.append(y)
                turtle.setheading(0)
                turtle.forward(10)
        elif r == 1:#下
            y -= 10
            if Judge(x,y,listx,listy):
                y+=10
                continue
            else:
                listx.append(x)
                listy.append(y)
                turtle.setheading(270)
                turtle.forward(10)
        elif r == 2:#左
            x -= 10
            if Judge(x,y,listx,listy):
                x+=10
                continue
            else:
                listx.append(x)
                listy.append(y)
                turtle.setheading(180)
                turtle.forward(10)
        elif r == 3:#上
            y += 10
            if Judge(x,y,listx,listy):
                y-=10
                continue
            else:
                listx.append(x)
                listy.append(y)
                turtle.setheading(90)
                turtle.forward(10)
#主程序部分
if __name__ == "__main__":
    temp = 'a'
    if temp=='a':
        turtle.hideturtle()#隐藏画笔
        Map(16)
        Draw(16)
        turtle.done()
    elif temp=='b':
        turtle.tracer(False)#隐藏动画效果
        for i in range(10,51): #模拟地图规模变化
            count=0#每次变化对死点计数器初始化
            for j in range(0,10000):#10000次仿真训练
                Draw(i)
                turtle.reset()
            print('For lattice of size ',i,', the probability of dead-end paths is ',count/100,'%')
    else:
        print('input error')

2D Sample Random Walk

  • 拟合直线斜率

    v: 0.5022164965587219

    选取点

    100,500,1000,3000,10000,20000,50000,100000

2D Traditional Random Walk

选取点        100,500,1000,3000,10000,20000,50000,100000

拟合直线斜率        v: 0.49883658055370034

2D Self-Avoiding Random Walk

选取点        Range(2,20)

拟合直线1斜率        v: 1.3074916500876987

拟合直线2斜率        v: 1.502393127(3/4*2)

For each of the method,give the N big enough:

2D Sample Random Walk

2D Traditional Random Walk

2D Self Avoiding Random Walk

3,000 is enough (Error:1e-2)

3,000 is enough (Error:1e-2)

50 is enough (Error:1e-2)

其实考虑到自封闭,

完全可以将self-avoiding random walk 控制在1e2-1e3上,不选1e1下只是不够精确而言。

(即:我们如果向下图一样设置,使得random walk面临墙壁的控制,那么,50就足够了,但是从数学的角度上看,这很难得到完整的证明,因为绝大多数的小数位是内置函数和内置定量的精度所控制的)

        

你可能感兴趣的:(#,科学计算案例,python,numpy,算法,数学建模,抽象代数)