- iOS基础开发知识速览 - 理解你要逆向的目标
自学不成才
iOS逆向工程专栏-揭秘苹果的封闭花园ioscocoaxcode
iOS基础开发知识速览-理解你要逆向的目标正如上一篇文章结尾所预告的,在完成环境搭建后,我们需要了解iOS开发的基础知识。这不是要求你成为一名iOS开发者,而是为了让你在逆向分析过程中能够理解应用的代码结构和运行逻辑。正所谓"知己知彼,百战不殆",只有了解iOS应用是如何构建的,我们才能更有效地进行逆向工程。本文将为零基础的读者提供iOS开发的核心概念速览,帮助你快速掌握进行逆向工程所需的基础知识
- 我们为什么需要服务发现?服务发现的基本概念和流程,并通过实践案例说明如何利用服务发现构建微服务架构 Why Do We Need Service Discovery?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介在现代分布式系统架构中,服务发现(ServiceDiscovery)在微服务架构、云计算和容器化架构等方面扮演着至关重要的角色。服务发现旨在根据服务名、IP地址或其他标识符动态查找服务提供者的位置信息,包括网络地址、端口号、协议类型、QoS参数等。通常情况下,客户端应用需要通过服务发现模块获取服务提供者的可用性信息,并选择合适的服务实例进行访问,从而实现分布式系
- 【图像去噪】论文复现:真实噪声转高斯噪声,提升高斯噪声训练的模型性能!Learning to Translate Noise的Pytorch源码复现,跑通流程,框架结构和损失函数详解!
十小大
pytorch人工智能python图像去噪图像处理深度学习计算机视觉
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通LearningtoTranslateNoise源码,包含基于BasicSR的训练和测试代码,得
- 大模型训练内存预估计算方法
junjunzai123
人工智能深度学习机器学习
方法论大模型在训练过程中,需要预估需要多少显存进行参数的存储,需要进行预估.来方便GPU的购买.举例以DeepSeek-V3模型为例,总共有671B个参数.B=Billion(十亿),因此,671B模型指拥有6710亿参数的模型。基础计算(以训练为例)假设使用FP16(16位浮点数)存储参数:每个参数占用2字节。671B参数总显存≈6710亿×2字节≈1,342GB实际训练时需额外存储梯度、优化器
- 外盘农产品期货数据:历史高频分钟回测的分享下载20250305
hightick
外盘期货高频历史行情数据集区块链大数据数据分析金融数据挖掘
外盘农产品期货数据:历史高频分钟回测的分享下载20250305在国际期货市场中,历史分钟高频数据的作用不可小觑。这些数据以分钟为时间尺度,详细记录了期货合约的价格变动和交易量信息,为投资者提供了全面、深入的市场分析视角。通过对这些高频数据的深入挖掘和精准分析,投资者可以更准确地把握市场走势,发现潜在的盈利点,并据此制定出更为精准、有效的交易策略。此外,分钟数据在量化投资方面也展现出其独特价值,为投
- 零基础也能看懂的ChatGPT等大模型入门解析!大模型入门到精通,看这篇就够了!
大模型微调实战
chatgpt百度人工智能大数据wps学习大模型
近两年,大语言模型LLM(LargeLanguageModel)越来越受到各行各业的广泛应用及关注。对于非相关领域研发人员,虽然不需要深入掌握每一个细节,但了解其基本运作原理是必备的技术素养。本文笔者结合自己的理解,用通俗易懂的语言对复杂的概念进行了总结,与大家分享~什么是ChatGPT?GPT对应的是三个关键概念:生成式(Generative)、预训练(Pre-Training)和Transfo
- 曝罗永浩挖走小米前50号员工要做AIOS;谷歌呼吁美国政府不要拆分公司;Copilot+PC能本地运行DeepSeek|极客头条
极客日报
资讯
「极客头条」——技术人员的新闻圈!CSDN的读者朋友们好,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。整理|苏宓出品|CSDN(ID:CSDNnews)一分钟速览新闻点!AAAI2025杰出论文奖出炉,南大周志华团队获奖字节跳动以约3150亿美元估值启动新一轮股票回购计划消息称vivoOS部门新成立AI领域,大模型训练重心向端侧转移为“AIOS”招兵买马:消息称罗永浩挖来小
- DeepSeek 各版本的区别
dushky
ai语言模型AI编程
DeepSeek各版本的区别主要体现在参数规模、架构设计、性能表现、硬件需求以及适用场景等方面,具体对比如下:一、参数规模与模型架构基础版(DeepSeek-V3)参数规模:6710亿参数(671B),采用混合专家(MoE)架构,每个Token激活约37B参数。定位:通用NLP任务,如智能客服、内容创作、知识问答等,强调高性价比和可扩展性。训练数据:14.8万亿Token预训练,推理速度较快(每秒
- vue3,Element Plus中抽屉el-drawer的样式设置
BillKu
vue.jsjavascript前端
el-drawer标签的摆放位置说明:要想有效设置el-drawer的样式,需确保el-drawer的上层不是template,须被其他元素包裹如:这样摆放设置样式不起效果:el-drawer样式设置说明://抽屉头部::v-deep.el-drawer__header{margin-bottom:0;padding:0;height:32px;//background-color:#ccc;}/
- Java利用 Function 接口告别冗余代码,打造高效断言神器
奔向理想的星辰大海
Java研发实用技巧云原生技术研发javapython数据库
在一个复杂的业务系统中,我们可能需要频繁地验证数据库中某个字段值是否有效,是否符合预期值。传统的做法可能充斥着大量相似的查询逻辑,每次都需要手动构建查询条件、执行查询并处理结果,这样的代码既冗长又难以维护。例如以下两个验证用户ID和部门ID是否有效的方法,虽然简单,但每次需要校验不同实体或不同条件时,就需要复制粘贴并做相应修改,导致代码库中充满了大量雷同的校验逻辑,给维护带来了困扰。//判断用户I
- 智能模型轻量化:知识蒸馏技术如何重塑AI部署格局
人工智能
智能模型轻量化:知识蒸馏技术如何重塑AI部署格局前言在人工智能技术高速迭代的今天,模型优化领域正经历着静默的革命。当我们惊叹于DeepSeek在自然语言处理上的惊艳表现时,一个关键问题逐渐浮出水面:如何让这些"庞然大物"真正走入现实场景?知识蒸馏技术作为模型压缩领域的突破性方案,正在为AI技术的普惠化开辟新路径。一、技术本质的解构与重构知识蒸馏颠覆了传统模型训练的范式,构建了"师生传承"的新型学习
- 从开源大模型工具Ollama存在安全隐患思考企业级大模型应用如何严守安全红线
数据安全大模型
近日,国家网络安全通报中心通报大模型工具Ollama默认配置存在未授权访问与模型窃取等安全隐患,引发了广泛关注。Ollama作为一款开源的大模型管理工具,在为用户提供便捷的同时,却因缺乏有效的安全管控机制,存在数据泄露、算力盗取、服务中断等安全问题。这一事件给企业级AI应用敲响了安全的警钟,警示企业选择具备完善企业级安全措施的AI运营平台的紧迫性。目前,企业部署大模型需求非常火热,SophonLL
- 探秘Mixup:数据增强的新利器
荣正青
探秘Mixup:数据增强的新利器mixupImplementationofthemixuptrainingmethod项目地址:https://gitcode.com/gh_mirrors/mi/mixup项目简介是一个由HongyiZhang开发的Python库,它实现了机器学习中的数据增强策略——Mixup方法。这个项目的目标是通过混合不同样本的数据点生成新的训练样本,从而帮助模型更好地学习数
- 图像处理中注意力机制的解析与代码详解
业余小程序猿
笔记
1.注意力机制的原理注意力机制(AttentionMechanism)是一种模拟人类视觉系统的机制,它使模型能够聚焦于图像的关键部分,从而提升图像处理任务的性能。在图像处理中,注意力机制通常分为通道注意力(ChannelAttention)和空间注意力(SpatialAttention)。通道注意力:通过动态调整每个通道的重要性,使模型更有效地利用输入数据的信息。其核心步骤包括全局池化、多层感知机
- 大模型研究:DeepSeek版本比较说明
程序猿学长
语言模型
截至2024年11月,DeepSeek已发布了多个版本的大模型,主要包括DeepSeek-Coder、DeepSeek-LLM等,各版本在不同方面各有优劣:各版本简介及对比1.DeepSeek-Coder特点:这是专注于代码领域的模型。它基于海量代码数据进行训练,对各类编程语言的语法、语义有深入理解。能快速准确地完成代码补全、代码生成、代码解释、代码纠错等任务,在编程场景中为开发者提供高效的辅助。
- Efficient Large Language Models: A Survey
UnknownBody
SurveyPaper语言模型人工智能自然语言处理
本文是LLM系列文章,针对《EfficientLargeLanguageModels:ASurvey》的翻译。高效的大型语言模型综述摘要1引言2模型为中心的方法3数据为中心的方法4LLM框架5结论摘要大型语言模型(LLM)在自然语言理解、语言生成和复杂推理等重要任务中表现出了非凡的能力,并有可能对我们的社会产生重大影响。然而,这种能力伴随着它们所需的大量资源,突出表明迫切需要开发有效的技术来应对其
- TikTok限流的八大信号!你都注意到了吗?
IPdodo全球网络服务
社媒平台
大家好!在当今短视频的世界里,TikTok成为了许多人展示才华和产品的主要平台。然而,许多创作者却在使用过程中遇到了一种令人困扰的情况——他们的内容播放量突然下降,甚至仅为零。这很可能是因为TikTok的算法对这些内容进行了限流。今天,我们将讨论识别这种限流的信号,并分享一些有效的恢复曝光的方法,助各位走出零播放的困境。要有效管理你的TikTok账号,首先需要了解限流的常见信号。以下是八个可能的限
- 深度学习代码分析——自用
肆——
深度学习人工智能笔记
代码来自:https://github.com/ChuHan89/WSSS-Tissue?tab=readme-ov-file借助了一些人工智能1_train_stage1.py代码功能总览该代码是弱监督语义分割(WSSS)流程的Stage1训练与测试脚本,核心任务是通过多标签分类模型生成图像级标签,为后续生成伪掩码(Pseudo-Masks)提供基础。代码分为train_phase和test_p
- 基于企业架构理论的研发工艺流程
银行金融科技
银行信息系统架构详解工艺流程企业架构理论
银行传统的研发工艺流程通常以瀑布模型或部分敏捷开发为主,但在企业架构(EnterpriseArchitecture,EA)理论的指导下,可以升级为更加灵活、高效和业务驱动的研发流程。以下是调整后的工艺流程升级方案:1.传统研发工艺流程的问题业务与IT脱节:业务需求与IT实现之间缺乏有效的对齐机制。流程僵化:瀑布模型导致开发周期长,难以快速响应市场变化。技术债务累积:缺乏整体架构规划,导致系统复杂度
- wpf datagrid滚动使用外置滚动条控件
bug菌¹
全栈Bug调优(实战版)#CSDN问答解惑(全栈版)wpf
本文收录于《全栈Bug调优(实战版)》专栏,主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!问题描述由于某些原因,我原本datagrid的垂直滚动条不能使用,故我希望在原本的datagrid旁边额外加上一条滚动条控件,让其绑定datagrid的滚动条,实现同步移
- PyTorch 中结合迁移学习和强化学习的完整实现方案
小赖同学啊
人工智能pytorch迁移学习人工智能
结合迁移学习(TransferLearning)和强化学习(ReinforcementLearning,RL)是解决复杂任务的有效方法。迁移学习可以利用预训练模型的知识加速训练,而强化学习则通过与环境的交互优化策略。以下是如何在PyTorch中结合迁移学习和强化学习的完整实现方案。1.场景描述假设我们有一个任务:训练一个机器人手臂抓取物体。我们可以利用迁移学习从一个预训练的视觉模型(如ResNet
- pytorch 模型测试
小赖同学啊
人工智能pytorch人工智能python
在使用PyTorch进行模型测试时,一般包含加载测试数据、加载训练好的模型、进行推理以及评估模型性能等步骤。以下为你详细介绍每个步骤及对应的代码示例。1.导入必要的库importtorchimporttorch.nnasnnimporttorchvisionimporttorchvision.transformsastransforms2.加载测试数据假设我们使用的是CIFAR-10数据集作为示例
- 大模型在高血压预测及围手术期管理中的应用研究报告
LCG元
围术期危险因子预测模型研究人工智能算法机器学习
目录一、引言1.1研究背景与意义1.2研究目的1.3国内外研究现状二、大模型预测高血压的原理与方法2.1常用大模型介绍2.2数据收集与预处理2.3模型训练与验证三、术前风险预测与手术方案制定3.1术前风险因素分析3.2大模型预测术前风险的方法与结果3.3基于预测结果的手术方案制定四、术中风险预测与麻醉方案制定4.1术中风险因素分析4.2大模型实时监测与风险预测4.3基于预测结果的麻醉方案制定五、术
- 测试是如何跟进和管理 bug
测试
测试在跟进和管理Bug定位精确、问题反馈及时、修复闭环高效三大关键环节中起到了至关重要的作用。Bug定位精确是整个流程的基础,通过详细记录和复现问题,可以帮助开发团队迅速找出缺陷根源;而及时有效的反馈机制则确保问题不会被遗漏;闭环管理则让每个问题都有迹可循、最终解决。这里我们重点展开讲解Bug定位精确的重要性,通过不断优化测试用例和环境搭建,能显著提高问题定位的准确率和效率,从而大幅降低项目风险和
- Pytorch实现之基于相对平均生成对抗网络的人脸图像超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络计算机视觉深度学习pythonpytorch
简介简介:改进SRGAN,并使用相对平均生成对抗网络的人脸图像超分辨率训练自己的数据集论文题目:FaceImageSuper-resolutionBasedOnRelativeAverageGenerativeAdversarialNetworks(基于相对平均生成对抗网络的人脸图像超分辨率)会议:20212ndAsiaSymposiumonSignalProcessing(ASSP)摘要:人脸图
- MySQL备份与恢复原理及步骤
AI天才研究院
Python实战DeepSeekR1&大数据AI人工智能大模型Java实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介MySQL作为关系型数据库管理系统(RDBMS),其数据备份和恢复技术是其生命线。掌握MySQL的数据备份与恢复原理与方法可以有效地保障数据的安全、可靠性以及可用性。通过正确地执行备份策略,并合理地配置备份服务器,就能够实现备份数据在不同时间点恢复、复制或还原。本文将从以下几个方面进行介绍:什么是MySQL备份?为何需要MySQL备份?MySQL备份原理MySQ
- 2024华为OD机试真题-数据分类算法(C++/Java/Python)-E卷-100分
2024剑指offer
华为odc++pythonjava
2024华为OD机试最新E卷题库-(C卷+D卷+E卷)-(JAVA、Python、C++)目录题目描述输入描述输出描述用例1用例2题目解析考点代码c++pythonJava题目描述对一个数据a进行分类,分类方法为:此数据a(四个字节大小)的四个字节相加对一个给定的值b取模如果得到的结果小于一个给定的值c,则数据a为有效类型,其类型为取模的值如果得到的结果大于或者等于c,则数据a为无效类型比如一个数
- 【论文笔记】3DGS压缩相关工作2篇
AndrewHZ
深度学习新浪潮论文阅读3DGS计算机图形学算法三维高斯飞溅压缩方法
1.背景介绍:NVS神经辐射场(NeRFs)引入了一种基于多层感知机(MLP)的新型隐式场景表示方法,它将体密度编码作为几何形状和方向辐射的代理量。渲染通过光线行进的方式来执行。这一解决方案为新视图合成(NVS)带来了前所未有的视觉质量,但代价是训练多层感知机的优化过程极为耗时,且渲染速度很慢。有几种方法加速了训练和渲染过程,通常是利用空间数据结构或者像哈希这样的编码方式,不过牺牲了视觉质量。近期
- 【大模型开源实战】10 分钟,教你如何用 LLama-Factory 训练和微调大模型
Langchain
llama人工智能自然语言处理大模型LLaMAFactoryLLM大语言模型
在这个AI快速发展的时代,我们很高兴为大家带来LlamaFactory-一个为AI开发者和爱好者量身打造的实用工具平台。作为非计算机专业出身的开发者,我们深深受益于计算机世界的开放共享精神。今天,我们希望通过LlamaFactory为这个社区贡献我们的一份力量。LlamaFactory能为您提供什么?英文文档的AI翻译:利用大语言模型将英文文档翻译成中文,助您更便捷地获取最新技术信息。快速获取主流
- Rust编程基础教程:Web开发入门
AI天才研究院
AI实战DeepSeekR1&大数据AI人工智能大模型Python实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.背景介绍由于Rust语言的出生地广泛流行于各个领域,有许多公司、组织都在用Rust进行开发,包括微软、Facebook、阿里巴巴、GitHub等。在移动端领域,包括华为、苹果、OPPO、vivo等都在大力推动Rust的应用。同时,Rust也越来越受欢迎,成为云计算、区块链、高性能计算等领域的主流编程语言。因此,对于新手而言,理解Rust编程语言的基本概念及特性,掌握
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache