越狱(快速幂C++)

题目

监狱有连续编号为 11 到 n 的 n 个房间,每个房间关押一个犯人。

有 m 种宗教,每个犯人可能信仰其中一种。

不存在没有信仰的犯人。

如果相邻房间的犯人信仰的宗教相同,就可能发生越狱。

求有多少种状态可能发生越狱。

输入格式

共一行,包含两个整数 m和 n。

输出格式

可能越狱的状态数,对 100003100003 取余。

数据范围

1≤m≤108
1≤n≤1012

输入样例:
2 3
输出样例:
6
样例解释

所有可能的 66 种状态为:(000)(001)(011)(100)(110)(111)(000)(001)(011)(100)(110)(111)。

代码

#include

using namespace std;

typedef long long LL;

const int mod = 100003;

int qmi(int a, LL b)
{
	LL res = 1;
	while(b)
	{
		if(b & 1) res = res * a % mod;
		b >>= 1;
		a = (LL) a * a % mod;
	}
	return res;
}

int main()
{
	int m;
	LL n;
	cin >> m >> n;
	//                                  +mod防止出现负数情况 
	cout << (qmi(m, n) - (LL)m * qmi(m - 1, n - 1) % mod + mod) % mod<< endl;
	//       总分配方案数   -  不会发生越狱的方案数
	//不会发生越狱时,第一个人随便分配,第二个人信仰为m - 1, 第三个人信仰也为 m - 1 
	
	return 0;
}

你可能感兴趣的:(算法)