Tomsk 寒冷的冬季傍晚非常无聊——没人想要在这个时间点儿上在街上晃。居住在Tomsk 的市民都坐在温暖的公寓里玩游戏打发时间。他们玩的其中一个游戏唤作“有色积木” 。
这个游戏需要三种不同颜色的木块:红色,绿色及蓝色。接着,用这些积木堆出一座n 层的塔。塔中每一层由三块积木组成。虽然这些组成塔的积木可以是三色中的任意一种颜色,但是它们必须平行且紧密排列。本文图中作为样例展示了一座塔。
游戏的玩家有且仅有恰好一人。每一分钟,玩家扔一次一个特殊的六面骰子。这个骰子有两面是绿色的,两面是蓝色的,一面红色及一面黑色。滚动结束后六面在最上面的机率相等。
如果滚出红色,绿色或蓝色,那么在这一分钟内,在塔中抽出一块这种颜色的积木,同时让塔不倒。如果这不可能,那么玩家需等到这分钟结束,且不触碰积木塔。同样,如果滚出黑色,那么亦要不触碰积木塔直至这分钟结束。另外,无论如何,从最上面的一层抽取积木是不被允许的。
一旦玩家抽出了一个积木,他必须把它放在塔的顶端,形成新的一层或填充最顶层。新堆出的一层需拥有和初始的若干层相同的性质。如果顶层没有填满,则禁止形成新的一层。
为了让塔不至于倒下,在除了顶层的每一层中,至少要有一块积木。此外,如果在某些层里,只留下了一块积木,且不是中间的那块,那么塔倒下。
当抽出任意一个非顶层的积木都会使塔倒下的时候,游戏结束。
这是由Tomsk 市民创造的奇妙游戏之一。我很想知道,当玩家始终做出完美的决策时,游戏会持续多少分钟。如果玩家的决策完美,那么每时每刻他选择抽出令游戏结束的期望时间最短的积木。
你的任务是写出一个程序,确定游戏结束期望需要多少分钟。
n<=6
考虑状压,设当前状态为S,可转移到的状态为SG,SR,SB(如果不能转移到就是0)
并且这一步可以转移的概率是P,那么我们可以得出
#include
#include
#include
#include
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define rep(i,a) for(int i=lst[a];i;i=nxt[i])
using namespace std;
typedef unsigned long long ll;
typedef double db;
const int N=30,P=67,M=4*1e6;
int lst[M],nxt[M];
ll p[N],t[M];
int n,l,a[N][4],b[N];
db eps=1e-6,f[M];
void add(int x,ll y,db z) {
t[++l]=y;f[l]=z;nxt[l]=lst[x];lst[x]=l;
}
db find(int x,ll y) {
rep(i,x) if (t[i]==y) return f[i];
return -1;
}
int get(int a,int b,int c) {
if (a>c) swap(a,c);
return (((a<<2)+b)<<2)+c;
}
ll get_ha() {
ll ha=0;
fo(i,1,n-1) if (a[i][2]&&b[i]>1) p[i]=get(a[i][1],a[i][2],a[i][3]);
else p[i]=0;
p[n]=get(a[n][1],a[n][2],a[n][3]);
sort(p+1,p+n);
fo(i,1,n) ha=ha*P+p[i];
return ha;
}
db dfs() {
ll ha=get_ha();
db now=find(ha%M,ha);
if (now!=-1) return now;
db ans=1.0;
db c[4]={0,1e9,1e9,1e9};
db P=1.0/6.0;
fo(cl,1,3)
fo(i,1,n-1)
fo(j,1,3) {
bool ok=a[i][j]==cl;
if (b[i]==1) ok=0;
if (j!=2&&!a[i][2]) ok=0;
if (j==2&&b[i]!=3) ok=0;
if (ok) {
bool pd=0;
if (b[n]==3) {n++;pd=1;}
a[i][j]=0;b[i]--;
fo(k,1,3)
if (a[n][k]==0) {
a[n][k]=cl;b[n]++;
c[cl]=min(c[cl],dfs());
a[n][k]=0;b[n]--;
}
if (pd) n--;
a[i][j]=cl;b[i]++;
}
}
if (c[1]==1e9) {c[1]=0;P+=1.0/3.0;}
if (c[2]==1e9) {c[2]=0;P+=1.0/3.0;}
if (c[3]==1e9) {c[3]=0;P+=1.0/6.0;}
if (fabs(P-1)return 0;
ans=ans+c[1]/3.0+c[2]/3.0+c[3]/6.0;
ans=ans/(1-P);
if (find(ha%M,ha)==-1) add(ha%M,ha,ans);
return ans;
}
int main() {
scanf("%d",&n);
fo(i,1,n) {
char ch;b[i]=3;
for(ch=getchar();ch<'A'||ch>'Z';ch=getchar());
fo(j,1,3) {
if (ch=='G') a[i][j]=1;
if (ch=='B') a[i][j]=2;
if (ch=='R') a[i][j]=3;
ch=getchar();
}
}
printf("%.9lf\n",dfs());
}