10.2/11.1:GLKit 初识和案例 (Swift)

概述

  • GLKit框架是为了简化基于OpenGL/OpenGL ES的应用开发。
  • 它内置数学方法和各种功能,其中的Effect有一点点固定管线的感觉。
  • 使用体感是面向对象,底层仍然是面向过程。

案例一:绘制一张图片

绘制一张图片

导头

import UIKit

import GLKit
import OpenGLES.ES3.gl
import OpenGLES.ES3.glext

// 忽略警告
@available(iOS,deprecated:1.0)

UIViewController 改为 GLKViewController

// 使用 GLKViewController
class ViewController: GLKViewController {

View 改为 GLKView

[图片上传失败...(image-de7578-1596009288359)]

定义 EAGLContext 和 GLKBaseEffect

// 上下文
var context: EAGLContext?
// 类似 OpenGL里的固定管线
var effect: GLKBaseEffect?

viewDidLoad() 3个准备方法

override func viewDidLoad() {
    super.viewDidLoad()
    
    // 1. 准备好 context 和 glkView
    setupConfig()
    
    // 2. 顶点数据 => 顶点缓冲区 => 顶点着色器
    setupVertexData()
    
    // 3. 图片文件 => 纹理 => effect
    setupTexture()
    
    // (4.) 代理方法里 设置绘制
}

setupConfig()

func setupConfig() {
    // 1. 初始化上下文
    context = EAGLContext(api: .openGLES3)
    
    guard let _context = context else {
        print("Initial ES context Failed!!")
        return
    }
    
    // 2. 可以有多个上下文,但只能有一个当前上下文
    EAGLContext.setCurrent(_context)
    
    // 3. 获取 GLKView
    guard let glkView = view as? GLKView else {
        print("Convert UIView to GLKView Failed!!")
        return
    }
    
    // view 绑定上下文
    glkView.context = _context
    // 颜色缓冲区格式
    glkView.drawableColorFormat = .RGBA8888
    // 深度缓冲区格式 (可以选16位)
    glkView.drawableDepthFormat = .format24
    
    // 4. 设置背景颜色 橘色,这里也能用 glkView.backgroundColor
    glClearColor(1.0, 0.4, 0.0, 1.0)
}

setupVertexData()

func setupVertexData() {
    
    // 1. 顶点数据,包含 顶点坐标(xyz) 和 纹理坐标(st)
    // 之后载入照片用到2个三角形,共6个顶点
    let vertextData: [GLfloat] = [
         0.8, -0.2,  0.0,    1.0, 0.0,
         0.8,  0.2,  0.0,    1.0, 1.0,
        -0.8,  0.2,  0.0,    0.0, 1.0,
       // x     y     z       s    t
         0.8, -0.2,  0.0,    1.0, 0.0,
        -0.8,  0.2,  0.0,    0.0, 1.0,
        -0.8, -0.2,  0.0,    0.0, 0.0,
    ]
    
    // 2. 创建 缓冲区(拿房间号)
    var bufferID = GLuint()
    glGenBuffers(1, &bufferID)
    
    // 3. 绑定 顶点缓冲区(指定用途,还能指定为 深度缓冲区等)
    glBindBuffer(GLenum(GL_ARRAY_BUFFER), bufferID)
    
    // 4. copy 内存 => 显存(顶点缓冲区)
    glBufferData(
        GLenum(GL_ARRAY_BUFFER), //copy到哪:顶点缓冲区
        MemoryLayout.stride * vertextData.count, //空间大小
        vertextData, //内容
        GLenum(GL_STATIC_DRAW)) //用途:绘制
    
    // 5.1. 打开通道 以使用缓冲区数据
    glEnableVertexAttribArray(GLuint(GLKVertexAttrib.position.rawValue))
    
    // 5.2. 顶点着色器(顶点坐标) 读取 <= 顶点缓冲区
    glVertexAttribPointer(
        GLuint(GLKVertexAttrib.position.rawValue), //传给谁:顶点position
        3, //position 由 xyz 组成
        GLenum(GL_FLOAT), //数据类型
        GLboolean(GL_FALSE), //是否需要归一化
        GLsizei(MemoryLayout.stride * 5), //每次读取的步长
        UnsafeRawPointer(bitPattern: MemoryLayout.stride * 0)) //指针起始偏移
    
    // 6.1. 打开通道 以使用缓冲区数据
    glEnableVertexAttribArray(GLuint(GLKVertexAttrib.texCoord0.rawValue))
    
    // 6.2. 顶点着色器(纹理坐标) 读取 <= 顶点缓冲区
    glVertexAttribPointer(
        GLuint(GLKVertexAttrib.texCoord0.rawValue), //传给谁:顶点position
        2, //tex 由 st 组成
        GLenum(GL_FLOAT), //数据类型
        GLboolean(GL_FALSE), //是否需要归一化
        GLsizei(MemoryLayout.stride * 5), //每次读取的步长
        UnsafeRawPointer(bitPattern: MemoryLayout.stride * 3)) //指针起始偏移
    
}

setupTexture()

func setupTexture() {
    
    // 1. 图片路径
    guard let filePath = Bundle.main.path(forResource: "pcr", ofType: "jpg") else {
        print("load image failed!!")
        return
    }
    
    // 2.1. 由于纹理坐标原点为左下角,图片显示原点为左上角,需要设置 (否则是倒的)
    let options = [GLKTextureLoaderOriginBottomLeft : NSNumber(booleanLiteral: true)]
    
    // 2.2. 图片 转 纹理
    guard let textureInfo = try? GLKTextureLoader.texture(withContentsOfFile: filePath, options: options) else {
        print("convert image to texture failed!!")
        return
    }
    
    // 3.1. 初始化 GLKBaseEffect
    effect = GLKBaseEffect()
    guard let _effect = effect else {
        print("Initial GLKBaseEffect failed!!")
        return
    }
    
    // 3.2. 打开 effect 的纹理通道
    _effect.texture2d0.enabled = GLboolean(GL_TRUE)
    
    // 3.3. 绑定 纹理
    _effect.texture2d0.name = textureInfo.name
}

代理方法 glkView(_: , drawIn: ) 设置绘制

  • 相当于OpenGLRenderScene()
// MARK:- GLKViewDelegate
    
override func glkView(_ view: GLKView, drawIn rect: CGRect) {
    
    // 1. 清空 颜色缓冲区
    glClear(GLbitfield(GL_COLOR_BUFFER_BIT))
    
    
    guard let _effect = effect else {
        print("Initial GLKBaseEffect failed!!")
        return
    }
    
    // 2. 准备绘制
    _effect.prepareToDraw()
    
    // 3. 绘制:三角形,从第0个顶点开始,共6个顶点
    glDrawArrays(GLenum(GL_TRIANGLES), 0, 6)
}

案例二:立方体旋转

立方体旋转
  • 导头、改GLKViewGLKViewController与案例一是一样的,不再赘述。

  • 关注注释:基本上只注释案例一里没有的代码。

基本的声明定义

// 顶点数据 结构体
struct MDVertex {
    let positionCoord: GLKVector3
    let textureCoord: GLKVector2
    let normalVec: GLKVector3
}


@available(iOS,deprecated: 12.0)
class ViewController: GLKViewController {
    
    var context: EAGLContext!
    var effect: GLKBaseEffect!
    // 顶点数据 数组
    var vertexes: [MDVertex]!
    // 顶点缓冲区ID
    var vertexBufferID: GLuint!
    
    // 记录旋转角度
    var angle: Int = 0
    // 计时器
    var displayLink: CADisplayLink!

deinit 释放

deinit {
    
    if EAGLContext.current() == context {
        EAGLContext.setCurrent(nil)
    }
    
    if let _ = vertexBufferID {
        glDeleteBuffers(1, &vertexBufferID)
        vertexBufferID = 0
    }
    
    displayLink.invalidate()
}

viewDidLoad() 2个准备方法

override func viewDidLoad() {
    super.viewDidLoad()
    
    // 1.1. 准备好 context 和 glkView
    // 1.2. 顶点数据 => 顶点缓冲区 => 顶点着色器
    // 1.3. 图片文件 => 纹理 => effect
    commonInit()
    
    // 2. 计时器,做旋转动画:调用的 update()方法 改变effect的 MV矩阵并重绘
    addCADisplayLink()
    
    // (3.) 代理方法里 设置绘制
}

commonInit()

  • 相当于案例一的3个准备方法。
func commonInit() {
    
    // context / glkView 的一系列操作
    context = EAGLContext(api: .openGLES3)
    assert(context != nil, "Initialize context failed!!")
    
    EAGLContext.setCurrent(context)
    
    guard let glkView = view as? GLKView else { return }
    
    glkView.context = context
    glkView.drawableColorFormat = .RGBA8888
    // 启用 深度缓冲区
    glkView.drawableDepthFormat = .format24
    glkView.backgroundColor = .clear
    
    // 深度缓冲区 默认(0, 1),这里相当于翻转Z轴,使正方形朝屏幕外
    glDepthRangef(1, 0)
    
    // 加载纹理的一系列操作
    guard let filePath = Bundle.main.path(forResource: "pcr", ofType: "jpg") else { return }
    
    guard let cgImage = UIImage(contentsOfFile: filePath)?.cgImage else { return }
    
    let options = [GLKTextureLoaderOriginBottomLeft : NSNumber(booleanLiteral: true)]
    guard let textureInfo = try? GLKTextureLoader.texture(with: cgImage, options: options) else { return }
    
    // effect
    effect = GLKBaseEffect()
    // effect 设置纹理
    effect.texture2d0.name = textureInfo.name
    // effect 设置光照
    effect.light0.enabled = GLboolean(GL_TRUE)
    effect.light0.diffuseColor = GLKVector4Make(1, 1, 1, 1)
    effect.light0.position = GLKVector4Make(0.5, 0, 5, 1)
    
    // 顶点坐标
    let ver1 = GLKVector3Make(-0.5,  0.5,  0.5)
    let ver2 = GLKVector3Make(-0.5, -0.5,  0.5)
    let ver3 = GLKVector3Make( 0.5,  0.5,  0.5)
    let ver4 = GLKVector3Make( 0.5, -0.5,  0.5)
    let ver5 = GLKVector3Make( 0.5,  0.5, -0.5)
    let ver6 = GLKVector3Make(-0.5,  0.5, -0.5)
    let ver7 = GLKVector3Make( 0.5, -0.5, -0.5)
    let ver8 = GLKVector3Make(-0.5, -0.5, -0.5)
    
    // 纹理坐标
    let tex1 = GLKVector2Make(0, 1)
    let tex2 = GLKVector2Make(0, 0)
    let tex3 = GLKVector2Make(1, 1)
    let tex4 = GLKVector2Make(1, 0)
    
    // 法线向量
    let normal1 = GLKVector3Make( 0, 0, 1)
    let normal2 = GLKVector3Make( 0, 1, 0)
    let normal3 = GLKVector3Make( 0,-1, 0)
    let normal4 = GLKVector3Make(-1, 0, 0)
    let normal5 = GLKVector3Make( 1, 0, 0)
    let normal6 = GLKVector3Make( 0, 0,-1)
    
    // 用于初始化的随便取值的顶点数据
    let meanlessVertex =
        MDVertex(positionCoord: ver1, textureCoord: tex1, normalVec: normal1)
    
    // 先用初始化来开辟内存空间
    vertexes = [MDVertex].init(repeating: meanlessVertex, count: 36)
    
    // 初始化36个顶点数据:每个三角形3个顶点,每个面2个三角形,一个立方体6个面,3x2x6 = 36
    
    vertexes[00] = MDVertex(positionCoord: ver1, textureCoord: tex1, normalVec: normal1)
    vertexes[01] = MDVertex(positionCoord: ver2, textureCoord: tex2, normalVec: normal1)
    vertexes[02] = MDVertex(positionCoord: ver3, textureCoord: tex3, normalVec: normal1)
    vertexes[03] = MDVertex(positionCoord: ver2, textureCoord: tex2, normalVec: normal1)
    vertexes[04] = MDVertex(positionCoord: ver3, textureCoord: tex3, normalVec: normal1)
    vertexes[05] = MDVertex(positionCoord: ver4, textureCoord: tex4, normalVec: normal1)
    
    vertexes[06] = MDVertex(positionCoord: ver3, textureCoord: tex3, normalVec: normal2)
    vertexes[07] = MDVertex(positionCoord: ver1, textureCoord: tex1, normalVec: normal2)
    vertexes[08] = MDVertex(positionCoord: ver5, textureCoord: tex4, normalVec: normal2)
    vertexes[09] = MDVertex(positionCoord: ver1, textureCoord: tex1, normalVec: normal2)
    vertexes[10] = MDVertex(positionCoord: ver5, textureCoord: tex4, normalVec: normal2)
    vertexes[11] = MDVertex(positionCoord: ver6, textureCoord: tex2, normalVec: normal2)

    vertexes[12] = MDVertex(positionCoord: ver4, textureCoord: tex3, normalVec: normal3)
    vertexes[13] = MDVertex(positionCoord: ver2, textureCoord: tex1, normalVec: normal3)
    vertexes[14] = MDVertex(positionCoord: ver7, textureCoord: tex4, normalVec: normal3)
    vertexes[15] = MDVertex(positionCoord: ver2, textureCoord: tex1, normalVec: normal3)
    vertexes[16] = MDVertex(positionCoord: ver7, textureCoord: tex4, normalVec: normal3)
    vertexes[17] = MDVertex(positionCoord: ver8, textureCoord: tex2, normalVec: normal3)

    vertexes[18] = MDVertex(positionCoord: ver1, textureCoord: tex3, normalVec: normal4)
    vertexes[19] = MDVertex(positionCoord: ver2, textureCoord: tex1, normalVec: normal4)
    vertexes[20] = MDVertex(positionCoord: ver6, textureCoord: tex4, normalVec: normal4)
    vertexes[21] = MDVertex(positionCoord: ver2, textureCoord: tex1, normalVec: normal4)
    vertexes[22] = MDVertex(positionCoord: ver6, textureCoord: tex4, normalVec: normal4)
    vertexes[23] = MDVertex(positionCoord: ver8, textureCoord: tex2, normalVec: normal4)
    
    vertexes[24] = MDVertex(positionCoord: ver3, textureCoord: tex3, normalVec: normal5)
    vertexes[25] = MDVertex(positionCoord: ver4, textureCoord: tex1, normalVec: normal5)
    vertexes[26] = MDVertex(positionCoord: ver5, textureCoord: tex4, normalVec: normal5)
    vertexes[27] = MDVertex(positionCoord: ver4, textureCoord: tex1, normalVec: normal5)
    vertexes[28] = MDVertex(positionCoord: ver5, textureCoord: tex4, normalVec: normal5)
    vertexes[29] = MDVertex(positionCoord: ver7, textureCoord: tex2, normalVec: normal5)
    
    vertexes[30] = MDVertex(positionCoord: ver6, textureCoord: tex1, normalVec: normal6)
    vertexes[31] = MDVertex(positionCoord: ver8, textureCoord: tex2, normalVec: normal6)
    vertexes[32] = MDVertex(positionCoord: ver5, textureCoord: tex3, normalVec: normal6)
    vertexes[33] = MDVertex(positionCoord: ver8, textureCoord: tex2, normalVec: normal6)
    vertexes[34] = MDVertex(positionCoord: ver5, textureCoord: tex3, normalVec: normal6)
    vertexes[35] = MDVertex(positionCoord: ver7, textureCoord: tex4, normalVec: normal6)
    
    // 顶点缓冲区的一系列操作
    vertexBufferID = GLuint()
    glGenBuffers(1, &vertexBufferID)
    glBindBuffer(GLenum(GL_ARRAY_BUFFER), vertexBufferID)
    
    // 顶点数据数组的大小 = 40x36 = 1440
    let bufferSize: GLsizeiptr = MemoryLayout.stride * vertexes.count
    // copy顶点数组 内存 => 显存
    glBufferData(
        GLenum(GL_ARRAY_BUFFER),
        bufferSize,
        vertexes,
        GLenum(GL_STATIC_DRAW))
    
    /*
     glVertexAttribPointer函数的最后一个参数,偏移值,要注意下!
     MDVertex结构体 内含 GLKVector3,GLKVector2,GLKVector3
     独立使用时:内存占用大小 GLKVector3 = 12,GLKVector2 = 8
     但在结构体:内存占用大小 GLKVector3 = 16,GLKVector2 = 8
     详情查阅 "字节对齐"
     所以 MDVertex结构体 内存占用大小 = 16+8+16 = 40
     */
    
    // 顶点
    glEnableVertexAttribArray(GLuint(GLKVertexAttrib.position.rawValue))
    glVertexAttribPointer(
        GLuint(GLKVertexAttrib.position.rawValue),
        3,
        GLenum(GL_FLOAT),
        GLboolean(GL_FALSE),
        GLsizei(MemoryLayout.stride),
        UnsafeRawPointer(bitPattern: 0))
    
    // 纹理
    glEnableVertexAttribArray(GLuint(GLKVertexAttrib.texCoord0.rawValue))
    glVertexAttribPointer(
        GLuint(GLKVertexAttrib.texCoord0.rawValue),
        2,
        GLenum(GL_FLOAT),
        GLboolean(GL_FALSE),
        GLsizei(MemoryLayout.stride),
        UnsafeRawPointer(bitPattern: 16))
    
    // 法线
    glEnableVertexAttribArray(GLuint(GLKVertexAttrib.normal.rawValue))
    glVertexAttribPointer(
        GLuint(GLKVertexAttrib.normal.rawValue),
        3,
        GLenum(GL_FLOAT),
        GLboolean(GL_FALSE),
        GLsizei(MemoryLayout.stride),
        UnsafeRawPointer(bitPattern: 16 + 8))
}

addCADisplayLink()

func addCADisplayLink() {
    
    // 记录旋转角度
    angle = 0
    // 定时器调用方法 update
    displayLink = CADisplayLink(target: self, selector: #selector(update))
    // 加入到 Runloop
    displayLink.add(to: RunLoop.main, forMode: RunLoop.Mode.common)
     
    //CADisplayLink 类似定时器,提供一个周期性调用.属于QuartzCore.framework中.
    //具体可以参考该博客 https://www.cnblogs.com/panyangjun/p/4421904.html
}

update()

@objc
func update() {
    // 1. 改变旋转角度
    angle = (angle + 2) % 360
    
    // 2. MV矩阵 = 绕 (0.3, 1, 0.7)轴线 旋转 angle角度(转弧度)
    effect.transform.modelviewMatrix = GLKMatrix4MakeRotation(
        GLKMathDegreesToRadians(Float(angle)),
        0.3,
        1,
        0.7)
    
    // 3. 重新渲染
    if let glkView = view as? GLKView {
        glkView.display()
    }
    
}

代理方法 glkView(_: , drawIn: ) 设置绘制

// MARK:- GLKViewDelegate

override func glkView(_ view: GLKView, drawIn rect: CGRect) {
    
    glEnable(GLenum(GL_DEPTH_TEST))
    glClear(GLbitfield(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT))
    
    effect.prepareToDraw()
    glClearColor(0.8, 0.8, 0.8, 1.0)
    glDrawArrays(GLenum(GL_TRIANGLES), 0, GLsizei(vertexes.count))
}

你可能感兴趣的:(10.2/11.1:GLKit 初识和案例 (Swift))