代码随想录算法训练营 动态规划part16

一、两个字符串的删除操作 

583. 两个字符串的删除操作 - 力扣(LeetCode)

class Solution {
    public int minDistance(String s1, String s2) {
        char[] cs1 = s1.toCharArray(), cs2 = s2.toCharArray();
        int n = s1.length(), m = s2.length();
        int[][] f = new int[n + 1][m + 1];
        for (int i = 0; i <= n; i++) f[i][0] = i;
        for (int j = 0; j <= m; j++) f[0][j] = j;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                f[i][j] = Math.min(f[i - 1][j] + 1, f[i][j - 1] + 1);
                if (cs1[i - 1] == cs2[j - 1]) f[i][j] = Math.min(f[i][j], f[i - 1][j - 1]);
            }
        }
        return f[n][m];
    }
}

二、编辑距离 

72. 编辑距离 - 力扣(LeetCode)

class Solution {
    public int minDistance(String word1, String word2) {
        int n = word1.length();
        int m = word2.length();

        // 有一个字符串为空串
        if (n * m == 0) {
            return n + m;
        }

        // DP 数组
        int[][] D = new int[n + 1][m + 1];

        // 边界状态初始化
        for (int i = 0; i < n + 1; i++) {
            D[i][0] = i;
        }
        for (int j = 0; j < m + 1; j++) {
            D[0][j] = j;
        }

        // 计算所有 DP 值
        for (int i = 1; i < n + 1; i++) {
            for (int j = 1; j < m + 1; j++) {
                int left = D[i - 1][j] + 1;
                int down = D[i][j - 1] + 1;
                int left_down = D[i - 1][j - 1];
                if (word1.charAt(i - 1) != word2.charAt(j - 1)) {
                    left_down += 1;
                }
                D[i][j] = Math.min(left, Math.min(down, left_down));
            }
        }
        return D[n][m];
    }
}

三、编辑距离总结篇 

代码随想录 (programmercarl.com)

( •̀ ω •́ )y

你可能感兴趣的:(算法,动态规划)