pcl--第十二节 2D和3D融合和手眼标定

2D&3D融合

概述

截止目前为止,我们学习了机器人学,学习了2D和3D视觉算法。我们也学习了2D相机(图像数据的来源)和3D相机(点云数据的来源)工作原理。

实际上,我们最终要做的,是一个手眼机器人系统。在这个系统里,相机与机器人构成了两个非常关键的部分,它们之间需要密切配合,因此,它们之间的关系,也就非常重要。确定相机与机器人之间的关系,这是手眼标定要解决的问题。

另一方面,在很多场合,为了增强算法的鲁棒性,我们通常同时使用图像数据与点云数据,这又涉及到2D与3D配准的问题。

相机配准

pcl--第十二节 2D和3D融合和手眼标定_第1张图片

  • 方式一:

通过双重循环遍历

/**
     * 将彩色图和深度图合并成点云
     * @param matrix 相机内参矩阵3x3
     * @param rgb    彩色图
     * @param depth  深度图
     * @param cloud  输出点云
     */
static void convert(Mat &matrix, Mat &rgb, Mat &depth, PointCloud::Ptr &cloud) {
    double camera_fx = matrix.at(0, 0);
    double camera_fy = matrix.at(1, 1);
    double camera_cx = matrix.at(0, 2);
    double camera_cy = matrix.at(1, 2);

    cout << "fx: " << camera_fx << endl;
    cout << "fy: " << camera_fy << endl;
    cout << "cx: " << camera_cx << endl;
    cout << "cy: " << camera_cy << endl;

    // 遍历深度图
    for (int v = 0; v < depth.rows; v++)
        for (int u = 0; u < depth.cols; u++) {
            // 获取深度图中(m,n)处的值
            ushort d = depth.ptr(v)[u];
            // d 可能没有值,若如此,跳过此点
            if (isnan(d) && abs(d) < 0.0001)
                continue;
            // d 存在值,则向点云增加一个点
            PointT p;

            // 计算这个点的空间坐标
            p.z = double(d) / 1000; //单位是米
            p.x = (u - camera_cx) * p.z / camera_fx;
            p.y = (v - camera_cy) * p.z / camera_fy;

            // 从rgb图像中获取它的颜色
            // rgb是三通道的BGR格式图,所以按下面的顺序获取颜色
            Vec3b bgr = rgb.at(v, u);
            p.b = bgr[0];
            p.g = bgr[1];
            p.r = bgr[2];

            // 把p加入到点云中
            cloud->points.push_back(p);
            //cout << cloud->points.size() << endl;
        }


    // 设置并保存点云
    cloud->height = 1;
    cloud->width = cloud->points.size();
    cout << "point cloud size = " << cloud->points.size() << endl;
    cloud->is_dense = false;
}
int main(){
    cv::Mat cameraMatrix; // 从文件加载相机内参
    cv::Mat rgb;         // 从相机得到RGB彩色图
    cv::Mat depth;       // 从相机得到depth深度图
    PointCloud::Ptr pCloud = PointCloud::Ptr(new PointCloud);
    convert(cameraMatrix, rgb, depth, pCloud);
}
  • 方式二:

通过指针遍历,并提前准备好计算矩阵

#include 
#include 
#include 
#include 
#include 

using namespace std;
using namespace cv;

float qnan_ = std::numeric_limits::quiet_NaN();
const char *cameraInCailFile = "./assets/3DCameraInCailResult.xml";

Eigen::Matrix colmap;
Eigen::Matrix rowmap;
//const short w = 512, h = 424;
const short w = 1920, h = 1080;

void prepareMake3D(const double cx, const double cy,
                   const double fx, const double fy) {
    float *pm1 = colmap.data();
    float *pm2 = rowmap.data();
    for (int i = 0; i < w; i++) {
        *pm1++ = (i - cx + 0.5) / fx;
    }
    for (int i = 0; i < h; i++) {
        *pm2++ = (i - cy + 0.5) / fy;
    }
}
/**
 * 根据内参,合并RGB彩色图和深度图到点云
 * @param cloud
 * @param depthMat
 * @param rgbMat
 */
void getCloud(pcl::PointCloud::Ptr &cloud, Mat &depthMat, Mat &rgbMat) {
    const float *itD0 = (float *) depthMat.ptr();
    const char *itRGB0 = (char *) rgbMat.ptr();

    if (cloud->size() != w * h)
        cloud->resize(w * h);


    pcl::PointXYZRGB *itP = &cloud->points[0];
    bool is_dense = true;

    for (size_t y = 0; y < h; ++y) {

        const unsigned int offset = y * w;
        const float *itD = itD0 + offset;
        const char *itRGB = itRGB0 + offset * 4;
        const float dy = rowmap(y);

        for (size_t x = 0; x < w; ++x, ++itP, ++itD, itRGB += 4) {
            const float depth_value = *itD / 1000.0f;

            if (!isnan(depth_value) && abs(depth_value) >= 0.0001) {

                const float rx = colmap(x) * depth_value;
                const float ry = dy * depth_value;
                itP->z = depth_value;
                itP->x = rx;
                itP->y = ry;

                itP->b = itRGB[0];
                itP->g = itRGB[1];
                itP->r = itRGB[2];
            } else {
                itP->z = qnan_;
                itP->x = qnan_;
                itP->y = qnan_;

                itP->b = qnan_;
                itP->g = qnan_;
                itP->r = qnan_;
                is_dense = false;
            }
        }
    }
    cloud->is_dense = is_dense;
}

int main(){
    Mat cameraMatrix = cv::Mat_(3, 3);
    FileStorage paramFs(cameraInCailFile, FileStorage::READ);
    paramFs["cameraMatrix"] >> cameraMatrix;
    // 内参数据
    double fx = cameraMatrix.at(0, 0);
    double fy = cameraMatrix.at(1, 1);
    double cx = cameraMatrix.at(0, 2);
    double cy = cameraMatrix.at(1, 2);
    // 提前准备计算所需参数
    prepareMake3D(cx, cy, fx, fy);

    cv::Mat rgbMat;      // 从相机得到RGB彩色图
    cv::Mat depthMat;        // 从相机得到depth深度图
    pcl::PointCloud::Ptr cloud(new pcl::PointCloud());
    getCloud(cloud, depthMat, rgbMat)
}

手眼标定(外参标定) 

一、手眼标定的原理

图例说明:

  • {b}:base基座标系
  • {g}:gripper抓手坐标系
  • {t}:target标定板坐标系
  • {c}:camera相机坐标系

pcl--第十二节 2D和3D融合和手眼标定_第2张图片

 pcl--第十二节 2D和3D融合和手眼标定_第3张图片

pcl--第十二节 2D和3D融合和手眼标定_第4张图片 

二、手眼标定的操作¶

pcl--第十二节 2D和3D融合和手眼标定_第5张图片

  1. 将标定板固定在机械臂末端
  2. 开启机械臂,开启摄像头
  3. 在距离摄像头40、60、80cm的距离上,在摄像头可见范围内,使用各种角度各拍照15-20张照片,一共45-60张。
  4. 同时保存照片以及对应拍照时机械臂位姿
  5. 准备好之前标定的相机内参
  6. 执行手眼标定API,得到相机在基坐标系的表达(旋转矩阵R+平移向量t)

三、自己动手实现手眼标定及验证¶

  • 从文件及图片读取照片
// Created by poplar on 19-7-25.
#include 
#include 
#include 

#include "boost/filesystem.hpp"   // includes all needed Boost.Filesystem declarations
#include 
#include 

#include "tinyxml/tinyxml2.h"
#include 

// Eigen 部分
#include 
// 稠密矩阵的代数运算(逆,特征值等)
#include 
// Eigen 几何模块
#include 

#include 
#include 
#include 

#include 
#include 
#include "utils/Rotation3DUtils.h"

using namespace boost::filesystem;          // for ease of tutorial presentation;
//  a namespace alias is preferred practice in real code

using namespace tinyxml2;
using namespace Eigen;
using namespace cv;
using namespace std;

using namespace rw::math;

// Eigen
// OpenCV
// RobWork

const string prefix_path = "/home/ty/Workspace/Robot/calibration-single";
const string intrinsicsPath = prefix_path + "/CaliResult/3DCameraInCailResult.xml";

const string pic_dir_path = prefix_path + "/ImageFromCamera";
const string exten = "bmp";
const string extrinsic_params = prefix_path + "/extrinsic_input_param.xml";
// const string extrinsic_params = "/home/poplar/Lesson/Cobot/Aubo/calibration-single/extrinsic_input_param_t.xml";

const string exCailFilePath = prefix_path + "/CaliResult/3DCameraExCailResult.xml";

enum Pattern {
    CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID
};

void printPose(const vector &pose);

void calcChessboardCorners(const Size &boardSize, float squareSize, vector &corners,
                           Pattern patternType = CHESSBOARD) {
    corners.resize(0);

    switch (patternType) {
        case CHESSBOARD:
        case CIRCLES_GRID:
            for (int i = 0; i < boardSize.height; i++)      // 9
                for (int j = 0; j < boardSize.width; j++)   // 6
                    corners.emplace_back(float(j * squareSize),
                                         float(i * squareSize), 0);
            break;

        case ASYMMETRIC_CIRCLES_GRID:
            for (int i = 0; i < boardSize.height; i++)
                for (int j = 0; j < boardSize.width; j++)
                    corners.emplace_back(float((2 * j + i % 2) * squareSize),
                                         float(i * squareSize), 0);
            break;

        default:
            CV_Error(Error::StsBadArg, "Unknown pattern type\n");
    }
}

/**
 * 通过图片集合 填充 旋转矩阵&平移矩阵
 * @param R_target2cam
 * @param t_target2cam
 * @param imgPaths
 */
bool fillFromImages(vector &R_target2cam, std::vector &t_target2cam, std::vector &imgPaths) {

    const Size patternSize(6, 9);
    const float squareSize = 20;

    //! [compute-poses]
    std::vector objectPoints;
//  [
//       [0, 0 , 0]
//       [0, 20, 0]
//       [0, 40, 0]
//       ...
//       [20, 0, 0]
//       ...
//  ]
    calcChessboardCorners(patternSize, squareSize, objectPoints);

    // 通过内参进行矫正
    // 检测角点
    // 计算变换矩阵(旋转矩阵+平移矩阵)
    cv::FileStorage fs(intrinsicsPath, FileStorage::READ);
    Mat cameraMatrix, distCoeffs;
    fs["cameraMatrix"] >> cameraMatrix;
    fs["distCoeffs"] >> distCoeffs;

    // 遍历图片
    for (const auto &path: imgPaths) {
        const string &s_path = path.string();
//        std::cout << s_path << std::endl;
        const Mat &img_mat = imread(s_path, IMREAD_UNCHANGED);

        // 查找图片所有角点
        std::vector corners;
        bool isFound = cv::findChessboardCorners(img_mat, patternSize, corners);
        if (!isFound) {
            std::cerr << "Image not found corners: " << s_path << std::endl;
            return false;
        }
//        std::cout << corners.size() << std::endl;

        cv::Mat rvec = cv::Mat::zeros(3, 1, CV_64FC1);
        cv::Mat tvec = cv::Mat::zeros(3, 1, CV_64FC1);
        // solveP3P
        // 根据:
        //      objectPoints(角点行列信息&大小信息)
        //      corners所有角点信息
        //      内参
        // 得到:
        //      旋转向量,平移向量
        solvePnP(objectPoints, corners, cameraMatrix, distCoeffs, rvec, tvec);

//        raux.convertTo(Rvec, CV_32F);    //旋转向量
//        taux.convertTo(Tvec, CV_32F);   //平移向量

        Mat R; // 旋转矩阵 <-> 旋转向量
        // Transforms Rotation Vector to Matrix
        Rodrigues(rvec, R); //  solvePnP返回的是旋转向量,故用罗德里格斯变换变成旋转矩阵
        cout << "rotation vector rvec =\n" << rvec << endl;
        cout << "rotation R =\n" << R << endl;
        cout << "translation vector tvec =\n" << tvec << std::endl;

        const Vec3f &oulerAngles = rotationMatrixToEulerAngles(R);
        std::cout << "oulerAngles = \n" << oulerAngles * RA2DE << std::endl; // zyx (RPY)
//        Rotation3D rot(R);
        std::cout << "Image path: " << s_path << std::endl;

        R_target2cam.push_back(R);
//        t_target2cam.push_back(tvec);
        t_target2cam.push_back(tvec / 1000);

//        const Mat &img_mat = imread(s_path, IMREAD_UNCHANGED);
//        Mat smallImg;
//        resize( img_mat, smallImg, Size(), 0.5, 0.5, INTER_LINEAR_EXACT);
//        cv::imshow("img_chess", smallImg);
//        std::cout << s_path << std::endl;
//        waitKey(0);
    }
    return true;

}

/**
 * 求齐次矩阵的逆矩阵
 * @param T
 * @return
 */
static Mat homogeneousInverse(const Mat &T) {
    CV_Assert(T.rows == 4 && T.cols == 4);

    Mat R = T(Rect(0, 0, 3, 3));
    Mat t = T(Rect(3, 0, 1, 3));
    Mat Rt = R.t();
    Mat tinv = -Rt * t;

    Mat Tinv = Mat::eye(4, 4, T.type());
    Rt.copyTo(Tinv(Rect(0, 0, 3, 3)));
    tinv.copyTo(Tinv(Rect(3, 0, 1, 3)));

    return Tinv;
}

/**
 * 外参标定
 *
 * 输入:
 *      60组:t2c
 *          标定板在相机坐标系的表达(标定板到相机的转换矩阵->旋转矩阵R+平移向量t)
 *          内参(用于求相机在标定板坐标系的表达)
 *
 *      60组:b2g  (g2b求逆)
 *          末端gripper的x,y,z,r,p,y-> 旋转矩阵R+平移向量t, 笛卡尔(RPY转旋转矩阵)
 *          求逆(转置),正交矩阵两个计算结果一致
 *
 * 输出:
 *      外参 :
 *          相机在Base坐标系的表达 (轴角对+平移向量t) (旋转矩阵R+平移向量t)
 *
 * 验证:
 *      通过现有图片及标定结果进行验证
 * @return
 */
int main() {
    // 相机坐标系下标定板(目标)的表达 (通过 彩图&深度图&内参 获得) ---------------1
    std::vector R_target2cam, t_target2cam;
    // 读取照片&深度图

    if (!exists(pic_dir_path)) {
        std::cout << pic_dir_path << " not exist" << std::endl;
        return 0;
    }
    int counter{0};
    // 将所有外参标定的照片路径存到imgPaths
    vector imgPaths;
    directory_iterator end_itr;
    for (directory_iterator itr(pic_dir_path); itr != end_itr; ++itr) {
        if (!is_directory(itr->status())) {
            path file_path = itr->path();
            const path &filename = file_path.filename();
            if (boost::starts_with(filename.string(), "raw_color_extrinsic_pose")) {
//                std::cout << filename.string() << std::endl;
                imgPaths.push_back(file_path);

//                counter++;
//                if (counter >= 5){
//                    break;
//                }
            }
        }
    }
    // 通过识别图像及角点,得到相机到标定板的变换矩阵 (内参)
    bool rst = fillFromImages(R_target2cam, t_target2cam, imgPaths);
    if (!rst) {
        return -1;
    }

    std::cout << "R_target2cam: " << R_target2cam.size() << std::endl;
    std::cout << "t_target2cam: " << t_target2cam.size() << std::endl;

    std::cout << " --------------------------------------------- 相机坐标系下标定板(目标)的表达 OK -------------------------------------------- ↑" << std::endl;
    // 基坐标Base下末端TCP(gripper)的表达 (通过设备获得) ---------------2
    std::vector R_gripper2base, t_gripper2base;
    // 轴角对&平移 -> 旋转矩阵&平移矩阵

    XMLDocument doc;
    doc.LoadFile(extrinsic_params.c_str());
    XMLElement *root = doc.RootElement();
    XMLElement *extrinsics = root->FirstChildElement("extrinsic");

    map> map;
    while (extrinsics) {
        const char *image_path = extrinsics->FirstChildElement("Limage_color_path")->GetText();
        string img_path = std::string(image_path);
        string img_name = img_path.substr(img_path.find_last_of('/') + 1, -1);
        // std::cout << image_path << " name: " << img_name << std::endl;
        double pose1 = atof(extrinsics->FirstChildElement("pose1")->GetText());
        double pose2 = atof(extrinsics->FirstChildElement("pose2")->GetText());
        double pose3 = atof(extrinsics->FirstChildElement("pose3")->GetText());
        double pose4 = atof(extrinsics->FirstChildElement("pose4")->GetText());
        double pose5 = atof(extrinsics->FirstChildElement("pose5")->GetText());
        double pose6 = atof(extrinsics->FirstChildElement("pose6")->GetText());
        vector pose{pose1, pose2, pose3, pose4, pose5, pose6};

        // 字典map保存的图片文件名及对应的=位姿
        map[img_name] = pose;
        extrinsics = extrinsics->NextSiblingElement();
    }
    // 将对应图片的机械臂笛卡尔空间坐标pose转成 旋转矩阵+平移矩阵
    for (const path &p: imgPaths) {
        std::string f_name = p.filename().string();
        try {
            // 取出每个图片对应的位姿
            vector &pose = map.at(f_name);
            if (pose.empty()) {
                std::cerr << "pose empty" << std::endl;
                return -1;
            }
//            std::cout << f_name << " -> ";printPose(pose);

            cv::Vec3f eulerAngles(pose[3],pose[4],pose[5]);
            const Mat &R = eulerAnglesToRotationMatrix(eulerAngles);

            cout << "rotation matrix3 eulerAngles =\n" << eulerAngles << endl;
            cout << "rotation matrix3 R =\n" << R << endl;

            cv::Mat t = (cv::Mat_(3,1) << pose[0], pose[1], pose[2]);
            cout << "translation matrix3 t =\n" << t << endl;

            R_gripper2base.push_back(R);
//            t_gripper2base.push_back(t);
            t_gripper2base.push_back(t / 1000);


//            const string &s_path = p.string();
//            const Mat &img_mat = imread(s_path, IMREAD_UNCHANGED);
//            Mat smallImg;
//            resize( img_mat, smallImg, Size(), 0.5, 0.5, INTER_LINEAR_EXACT);
//            cv::imshow("img_chess", smallImg);
//            std::cout << s_path << std::endl;
//            waitKey(0);
        } catch (const std::out_of_range &e) {
            std::cerr << f_name << " was not found." << std::endl;
        }
    }
    std::cout << " --------------------------------------------- 基坐标Base下末端TCP(gripper)的表达 -------------------------------------------- ↑" << std::endl;

//    return 0;

//    std::cout << map["raw_color_extrinsic_pose_07_26_17_01_59_965.bmp"].size()<< std::endl;

    // TCP坐标系下基坐标的表达
    std::vector R_base2gripper, t_base2gripper;

    // 转换成逆矩阵
    unsigned long size = R_gripper2base.size();
    R_base2gripper.reserve(size);
    t_base2gripper.reserve(size);
    for (size_t i = 0; i < size; i++) {
        // 获取每个抓手的姿态(旋转矩阵)
        Mat R = R_gripper2base[i];
        Mat Rt = R.t(); // 转置
        R_base2gripper.push_back(Rt);

        // 获取每个抓手的位置
        Mat t = t_gripper2base[i];
        Mat tinv = -Rt * t;
        t_base2gripper.push_back(tinv);

        cout << "base2gripper Rt=\n" << Rt << endl;
        cout << "base2gripper tinv =\n" << tinv << endl;
    }

    std::cout << " --------------------------------------------- 末端TCP坐标下Base的表达 -------------------------------------------- ↑" << std::endl;



    std::cout << R_target2cam.size()   << ":" << t_target2cam.size()   << '\n' <<
                 R_base2gripper.size() << ":" << t_base2gripper.size() << std::endl;


    std::cout << "---------------------calibrateHandEye start !---------------------" << std::endl;
    // 求Base基坐标下相机Cam的表达
    Mat R_cam2base_est, t_cam2base_est;
    // 进行手眼标定(外参)
    cv::calibrateHandEye(
             R_base2gripper,  t_base2gripper,
             R_target2cam,    t_target2cam,
             R_cam2base_est,  t_cam2base_est,
             HandEyeCalibrationMethod::CALIB_HAND_EYE_DANIILIDIS);

    cout << "旋转矩阵 est: \n" << R_cam2base_est << endl;
    cout << "平移矩阵 est: \n" << t_cam2base_est * 1000 << endl;

    double angle = 0;
    double axisX = 0;
    double axisY = 0;
    double axisZ = 0;
    double translationX = 0;
    double translationY = 0;
    double translationZ = 0;
    // 使用opencv读取文件
    cv::FileStorage fs(exCailFilePath, cv::FileStorage::READ);
    fs["Angle"] >> angle;
    fs["AxisX"] >> axisX;
    fs["AxisY"] >> axisY;
    fs["AxisZ"] >> axisZ;
    fs["TranslationX"] >> translationX;
    fs["TranslationY"] >> translationY;
    fs["TranslationZ"] >> translationZ;
    // 轴角对
    Vector3d axisMatrix(axisX, axisY, axisZ);
    AngleAxisd angleAxisd(angle, axisMatrix);
    // 获取旋转矩阵
    const Eigen::AngleAxis::Matrix3 &rotationMatrix = angleAxisd.toRotationMatrix();
//    cout << "旋转矩阵e:" << rotationMatrix << endl;
    // 获取平移矩阵
    Vector3d t_cam2base_eigen(translationX, translationY, translationZ);
    // 获取输出结果
//    cout << "平移向量e:" << t_cam2base_eigen << endl;

    // 真实值,eigen转成cv
    cv::Mat_ R_cam2base_true(3, 3);
    cv::eigen2cv(rotationMatrix,R_cam2base_true);
    cv::Mat_ t_cam2base_true(3, 1);
    cv::eigen2cv(t_cam2base_eigen,t_cam2base_true);

    cout << "旋转矩阵 true: \n" << R_cam2base_true << endl;
    cout << "平移矩阵 true: \n" << t_cam2base_true << endl;

    // 估算的 旋转矩阵->旋转向量
//    Mat rvec_cam2base_est;
//    cv::Rodrigues(R_cam2base_est, rvec_cam2base_est);

    // 真实的 旋转矩阵->旋转向量
//    Mat rvec_cam2base_true;
//    cv::Rodrigues(R_cam2base_true, rvec_cam2base_true);
//    cout << "旋转矩阵 est: \n" << rvec_cam2base_est << endl;
//    cout << "平移向量 est: \n" << t_cam2base_true << endl;

//    double rvecDiff = norm(rvec_cam2base_true, rvec_cam2base_est, NormTypes::NORM_L2);
//    double tvecDiff = norm(t_cam2base_true, t_cam2base_est, NormTypes::NORM_L2);
//    std::cout << "rvecDiff:" << rvecDiff << " tvecDiff:" << tvecDiff << std::endl;
    return 0;
}

void printPose(const vector &pose) {
    cout << "[" <<
         pose[0] << " " << pose[1] << " " << pose[2] << " " <<
         pose[3] << " " << pose[4] << " " << pose[5] << " " <<
         "]" << endl;
}

2D与3D融合实践¶

根据模板抓取指定物体:

制作模板,并计算取得相机到模板的变换矩阵T1,根据实时相机中拍到的物体进行模板匹配,得到变换矩阵T0,最后和相机的外参矩阵Tc进行矩阵相乘,得到目标在世界坐标系的表示,从而进行抓取操作。

一、制作模板:求T1¶

  1. Kinect相机拍照(得到RGB图和深度图)

    01_PhotoCapture.cpp

  2. 检测抓取位置(u,v),根据内参及深度信息得到三个空间中的点坐标

    02_PointLocator.cpp

    03_TemplateMaker.cpp

  3. 构建坐标系得到旋转矩阵T1,转成RPY进行抓取测试

    04_TestGrabTemplate.cpp

  4. 生成点云图用于模板匹配(进行直通滤波及降采样)

    05_CreatePclCloud.cpp 验证变换矩阵

    06_TemplateCloudFilter.cpp 生成剪切后的模板

    • 实时的拍照得到RGB和深度图
    • 合成目标点云图
    • 通过直通滤波框定范围(得到感兴趣区域)
    • 将感兴趣区域进行降采样(提高模板匹配效率)

二、使用模板:求T0¶

准备好切割后的点云template.pcd以及对应的变换矩阵T1(可以有多个)

  1. Kinect相机拍照(得到RGB图和深度图)

    01_PhotoCapture.cpp

  2. 生成目标点云图

    07_TargetCloudFilter.cpp

  3. 进行模板与目标点云图匹配(统一进行直通滤波及降采样),得到变换矩阵T0

    08_TemplateAlignment.cpp

三、进行抓取测试¶

09_TestGrabTarget.cpp

T0 为目标在模板坐标系的表达 T1 为模板在相机坐标系的表达 Tc 为相机在基坐标系的表达

待优化事宜¶

  1. 安全位置判定
  2. 将盒子抓取到指定位置放置
  3. 不间断抓取多个盒子
  4. 准备多个模板,提高模板匹配姿态识别度
  5. 设置间隔,实时进行模板匹配
  6. 设置目标位置抓取动态延时
  7. 自动避障
  8. 其他

自己封装内外参标定工具¶

  • 命令行版
  • Qt版

你可能感兴趣的:(3d,数码相机)