如果 f ( t ) f(t) f(t)满足:在 ( − ∞ , + ∞ ) ( - \infty , + \infty ) (−∞,+∞)上连续或只有有限个可去间断点,且当 ∣ t ∣ → + ∞ |t| \to + \infty ∣t∣→+∞时, f ( t ) f(t) f(t) → \to → 0 0 0,则
F [ f ′ ( t ) ] = j ω F [ f ( t ) ] \mathscr F[f'(t)]=j\omega \mathscr F[f(t)] F[f′(t)]=jωF[f(t)]
该式表明一个函数导数的Fourier变换等于这个函数的Fourier变换乘以 j ω j\omega jω.
证明:由Fourier变换的定义, 并利用分部积分可得
F [ f ′ ( t ) ] = ∫ − ∞ + ∞ f ′ ( t ) e − j ω t d t = f ( t ) e − j ω t ∣ − ∞ + ∞ + j ω ∫ − ∞ + ∞ f ( t ) e − j ω t d t = j ω F [ f ( t ) ] \mathscr F[f'(t)] = \int_{ - \infty }^{ + \infty } {f'(t){e^{ - j\omega t}}dt} \\ \\ \\= \left. {f(t){e^{ - j\omega t}}} \right|_{ - \infty }^{ + \infty } + j\omega \int_{ - \infty }^{ + \infty } {f(t){e^{ - j\omega t}}dt} \\ \\ \\= j\omega \mathscr F[f(t)] F[f′(t)]=∫−∞+∞f′(t)e−jωtdt=f(t)e−jωt −∞+∞+jω∫−∞+∞f(t)e−jωtdt=jωF[f(t)]
注:分部积分公式: ∫ u d v = u v − ∫ v d u \int {udv = uv - \int {vdu} } ∫udv=uv−∫vdu
推论:若 f ( k ) ( t ) f^{(k)}(t) f(k)(t)在 ( − ∞ , + ∞ ) ( - \infty , + \infty ) (−∞,+∞)上连续或只有有限个可去间断点,且 lim ∣ t ∣ → ∞ f ( k ) ( t ) = 0 \lim \limits_{|t| \to \infty } \,{f^{(k)}}(t) = 0 ∣t∣→∞limf(k)(t)=0, k = 0 , 1 , 2 , . . . , n − 1 k=0,1,2,...,n-1 k=0,1,2,...,n−1,则
F [ f ( n ) ( t ) ] = ( j ω ) n F [ f ( t ) ] \mathscr F[{f^{\left( n \right)}}(t)] = {\left( {{\rm{j}}\omega } \right)^n}\mathscr F[f(t)] F[f(n)(t)]=(jω)nF[f(t)]
象函数的导数公式:
设 F [ f ( t ) ] = F ( ω ) \mathscr F[f(t)] = F(\omega ) F[f(t)]=F(ω),则
d d ω F ( ω ) = F [ − j t f ( t ) ] \frac{d}{{d\omega }}F(\omega ) =\mathscr F[ - jtf(t)] dωdF(ω)=F[−jtf(t)]
该式表明一个函数的象函数的导数等于该函数乘以 − j t -jt −jt后的Fourier变换。
一般地,
d n d ω n F ( ω ) = ( − j ) n F [ t n f ( t ) ] \frac{{{d^n}}}{{d{\omega ^n}}}F(\omega ) = {( - j)^n}\mathscr F[{t^n}f(t)] dωndnF(ω)=(−j)nF[tnf(t)]