前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家:点击跳转
目录
一,直方图均衡
1,直方图统计
2,灰度变换
3,直方图均衡
二,可分离滤波器
1,可分离滤波器的工厂
2,ocvSepFilter、sepFilter2D
3,Sobel
三,相位相关法 phaseCorrelate
1,phaseCorrelate
2,汉宁窗
四,匹配器
1,纯虚类DescriptorMatcher
2,子类FlannBasedMatcher
3,knnMatch算法
opencv-4.2.0\modules\imgproc\src\histogram.cpp 中的代码:
class EqualizeHistCalcHist_Invoker : public cv::ParallelLoopBody
{
public:
enum {HIST_SZ = 256};
EqualizeHistCalcHist_Invoker(cv::Mat& src, int* histogram, cv::Mutex* histogramLock)
: src_(src), globalHistogram_(histogram), histogramLock_(histogramLock)
{ }
void operator()( const cv::Range& rowRange ) const CV_OVERRIDE
{
int localHistogram[HIST_SZ] = {0, };
const size_t sstep = src_.step;
int width = src_.cols;
int height = rowRange.end - rowRange.start;
if (src_.isContinuous())
{
width *= height;
height = 1;
}
for (const uchar* ptr = src_.ptr(rowRange.start); height--; ptr += sstep)
{
int x = 0;
for (; x <= width - 4; x += 4)
{
int t0 = ptr[x], t1 = ptr[x+1];
localHistogram[t0]++; localHistogram[t1]++;
t0 = ptr[x+2]; t1 = ptr[x+3];
localHistogram[t0]++; localHistogram[t1]++;
}
for (; x < width; ++x)
localHistogram[ptr[x]]++;
}
cv::AutoLock lock(*histogramLock_);
for( int i = 0; i < HIST_SZ; i++ )
globalHistogram_[i] += localHistogram[i];
}
static bool isWorthParallel( const cv::Mat& src )
{
return ( src.total() >= 640*480 );
}
private:
EqualizeHistCalcHist_Invoker& operator=(const EqualizeHistCalcHist_Invoker&);
cv::Mat& src_;
int* globalHistogram_;
cv::Mutex* histogramLock_;
};
类继承了ParallelLoopBody,可以做并行加速。
灰度级HIST_SZ = 256
构造函数保存三个参数。
仿函数是统计直方图。
isWorthParallel函数是判断是否启用并行加速。
class EqualizeHistLut_Invoker : public cv::ParallelLoopBody
{
public:
EqualizeHistLut_Invoker( cv::Mat& src, cv::Mat& dst, int* lut )
: src_(src),
dst_(dst),
lut_(lut)
{ }
void operator()( const cv::Range& rowRange ) const CV_OVERRIDE
{
const size_t sstep = src_.step;
const size_t dstep = dst_.step;
int width = src_.cols;
int height = rowRange.end - rowRange.start;
int* lut = lut_;
if (src_.isContinuous() && dst_.isContinuous())
{
width *= height;
height = 1;
}
const uchar* sptr = src_.ptr(rowRange.start);
uchar* dptr = dst_.ptr(rowRange.start);
for (; height--; sptr += sstep, dptr += dstep)
{
int x = 0;
for (; x <= width - 4; x += 4)
{
int v0 = sptr[x];
int v1 = sptr[x+1];
int x0 = lut[v0];
int x1 = lut[v1];
dptr[x] = (uchar)x0;
dptr[x+1] = (uchar)x1;
v0 = sptr[x+2];
v1 = sptr[x+3];
x0 = lut[v0];
x1 = lut[v1];
dptr[x+2] = (uchar)x0;
dptr[x+3] = (uchar)x1;
}
for (; x < width; ++x)
dptr[x] = (uchar)lut[sptr[x]];
}
}
static bool isWorthParallel( const cv::Mat& src )
{
return ( src.total() >= 640*480 );
}
private:
EqualizeHistLut_Invoker& operator=(const EqualizeHistLut_Invoker&);
cv::Mat& src_;
cv::Mat& dst_;
int* lut_;
};
构造函数保存三个参数。
仿函数是根据灰度变换表lut,把原图变成目标图。
void cv::equalizeHist( InputArray _src, OutputArray _dst )
{
CV_INSTRUMENT_REGION();
CV_Assert( _src.type() == CV_8UC1 );
if (_src.empty())
return;
CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),
ocl_equalizeHist(_src, _dst))
Mat src = _src.getMat();
_dst.create( src.size(), src.type() );
Mat dst = _dst.getMat();
CV_OVX_RUN(!ovx::skipSmallImages(src.cols, src.rows),
openvx_equalize_hist(src, dst))
Mutex histogramLockInstance;
const int hist_sz = EqualizeHistCalcHist_Invoker::HIST_SZ;
int hist[hist_sz] = {0,};
int lut[hist_sz];
EqualizeHistCalcHist_Invoker calcBody(src, hist, &histogramLockInstance);
EqualizeHistLut_Invoker lutBody(src, dst, lut);
cv::Range heightRange(0, src.rows);
if(EqualizeHistCalcHist_Invoker::isWorthParallel(src))
parallel_for_(heightRange, calcBody);
else
calcBody(heightRange);
int i = 0;
while (!hist[i]) ++i;
int total = (int)src.total();
if (hist[i] == total)
{
dst.setTo(i);
return;
}
float scale = (hist_sz - 1.f)/(total - hist[i]);
int sum = 0;
for (lut[i++] = 0; i < hist_sz; ++i)
{
sum += hist[i];
lut[i] = saturate_cast(sum * scale);
}
if(EqualizeHistLut_Invoker::isWorthParallel(src))
parallel_for_(heightRange, lutBody);
else
lutBody(heightRange);
}
先是直方图统计,然后是对于纯色图片的特殊处理(直方图均衡结果等于原图),再是计算灰度变换表lut,最后把原图变成目标图。
Ptr createSeparableLinearFilter(
int _srcType, int _dstType,
InputArray __rowKernel, InputArray __columnKernel,
Point _anchor, double _delta,
int _rowBorderType, int _columnBorderType,
const Scalar& _borderValue)
{
Mat _rowKernel = __rowKernel.getMat(), _columnKernel = __columnKernel.getMat();
_srcType = CV_MAT_TYPE(_srcType);
_dstType = CV_MAT_TYPE(_dstType);
int sdepth = CV_MAT_DEPTH(_srcType), ddepth = CV_MAT_DEPTH(_dstType);
int cn = CV_MAT_CN(_srcType);
CV_Assert( cn == CV_MAT_CN(_dstType) );
int rsize = _rowKernel.rows + _rowKernel.cols - 1;
int csize = _columnKernel.rows + _columnKernel.cols - 1;
if( _anchor.x < 0 )
_anchor.x = rsize/2;
if( _anchor.y < 0 )
_anchor.y = csize/2;
int rtype = getKernelType(_rowKernel,
_rowKernel.rows == 1 ? Point(_anchor.x, 0) : Point(0, _anchor.x));
int ctype = getKernelType(_columnKernel,
_columnKernel.rows == 1 ? Point(_anchor.y, 0) : Point(0, _anchor.y));
Mat rowKernel, columnKernel;
bool isBitExactMode = false;
int bdepth = std::max(CV_32F,std::max(sdepth, ddepth));
int bits = 0;
if( sdepth == CV_8U &&
((rtype == KERNEL_SMOOTH+KERNEL_SYMMETRICAL &&
ctype == KERNEL_SMOOTH+KERNEL_SYMMETRICAL &&
ddepth == CV_8U) ||
((rtype & (KERNEL_SYMMETRICAL+KERNEL_ASYMMETRICAL)) &&
(ctype & (KERNEL_SYMMETRICAL+KERNEL_ASYMMETRICAL)) &&
(rtype & ctype & KERNEL_INTEGER) &&
ddepth == CV_16S)) )
{
int bits_ = ddepth == CV_8U ? 8 : 0;
bool isValidBitExactRowKernel = createBitExactKernel_32S(_rowKernel, rowKernel, bits_);
bool isValidBitExactColumnKernel = createBitExactKernel_32S(_columnKernel, columnKernel, bits_);
if (!isValidBitExactRowKernel)
{
CV_LOG_DEBUG(NULL, "createSeparableLinearFilter: bit-exact row-kernel can't be applied: ksize=" << _rowKernel.total());
}
else if (!isValidBitExactColumnKernel)
{
CV_LOG_DEBUG(NULL, "createSeparableLinearFilter: bit-exact column-kernel can't be applied: ksize=" << _columnKernel.total());
}
else
{
bdepth = CV_32S;
bits = bits_;
bits *= 2;
_delta *= (1 << bits);
isBitExactMode = true;
}
}
if (!isBitExactMode)
{
if( _rowKernel.type() != bdepth )
_rowKernel.convertTo( rowKernel, bdepth );
else
rowKernel = _rowKernel;
if( _columnKernel.type() != bdepth )
_columnKernel.convertTo( columnKernel, bdepth );
else
columnKernel = _columnKernel;
}
int _bufType = CV_MAKETYPE(bdepth, cn);
Ptr _rowFilter = getLinearRowFilter(
_srcType, _bufType, rowKernel, _anchor.x, rtype);
Ptr _columnFilter = getLinearColumnFilter(
_bufType, _dstType, columnKernel, _anchor.y, ctype, _delta, bits );
return Ptr( new FilterEngine(Ptr(), _rowFilter, _columnFilter,
_srcType, _dstType, _bufType, _rowBorderType, _columnBorderType, _borderValue ));
}
前2个参数是输入输出图像的格式,接下来2个参数是核分离出来的行向量和列向量。
函数返回一个FilterEngine对象,其中保存了一些需要的信息。
static void ocvSepFilter(int stype, int dtype, int ktype,
uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step,
int width, int height, int full_width, int full_height,
int offset_x, int offset_y,
uchar * kernelx_data, int kernelx_len,
uchar * kernely_data, int kernely_len,
int anchor_x, int anchor_y, double delta, int borderType)
{
Mat kernelX(Size(kernelx_len, 1), ktype, kernelx_data);
Mat kernelY(Size(kernely_len, 1), ktype, kernely_data);
Ptr f = createSeparableLinearFilter(stype, dtype, kernelX, kernelY,
Point(anchor_x, anchor_y),
delta, borderType & ~BORDER_ISOLATED);
Mat src(Size(width, height), stype, src_data, src_step);
Mat dst(Size(width, height), dtype, dst_data, dst_step);
f->apply(src, dst, Size(full_width, full_height), Point(offset_x, offset_y));
};
先创建FilterEngine对象,然后调用它的apply方法进行滤波。
void sepFilter2D(int stype, int dtype, int ktype,
uchar* src_data, size_t src_step, uchar* dst_data, size_t dst_step,
int width, int height, int full_width, int full_height,
int offset_x, int offset_y,
uchar * kernelx_data, int kernelx_len,
uchar * kernely_data, int kernely_len,
int anchor_x, int anchor_y, double delta, int borderType)
{
bool res = replacementSepFilter(stype, dtype, ktype,
src_data, src_step, dst_data, dst_step,
width, height, full_width, full_height,
offset_x, offset_y,
kernelx_data, kernelx_len,
kernely_data, kernely_len,
anchor_x, anchor_y, delta, borderType);
if (res)
return;
ocvSepFilter(stype, dtype, ktype,
src_data, src_step, dst_data, dst_step,
width, height, full_width, full_height,
offset_x, offset_y,
kernelx_data, kernelx_len,
kernely_data, kernely_len,
anchor_x, anchor_y, delta, borderType);
}
调用ocvSepFilter
void cv::Sobel( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
int ksize, double scale, double delta, int borderType )
{
CV_INSTRUMENT_REGION();
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
if (ddepth < 0)
ddepth = sdepth;
int dtype = CV_MAKE_TYPE(ddepth, cn);
_dst.create( _src.size(), dtype );
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
Mat kx, ky;
getDerivKernels( kx, ky, dx, dy, ksize, false, ktype );
if( scale != 1 )
{
// usually the smoothing part is the slowest to compute,
// so try to scale it instead of the faster differentiating part
if( dx == 0 )
kx *= scale;
else
ky *= scale;
}
CV_OCL_RUN(ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 && ksize == 3 &&
(size_t)_src.rows() > ky.total() && (size_t)_src.cols() > kx.total(),
ocl_sepFilter3x3_8UC1(_src, _dst, ddepth, kx, ky, delta, borderType));
CV_OCL_RUN(ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 && (size_t)_src.rows() > kx.total() && (size_t)_src.cols() > kx.total(),
ocl_sepFilter2D(_src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType))
Mat src = _src.getMat();
Mat dst = _dst.getMat();
Point ofs;
Size wsz(src.cols, src.rows);
if(!(borderType & BORDER_ISOLATED))
src.locateROI( wsz, ofs );
CALL_HAL(sobel, cv_hal_sobel, src.ptr(), src.step, dst.ptr(), dst.step, src.cols, src.rows, sdepth, ddepth, cn,
ofs.x, ofs.y, wsz.width - src.cols - ofs.x, wsz.height - src.rows - ofs.y, dx, dy, ksize, scale, delta, borderType&~BORDER_ISOLATED);
CV_OVX_RUN(true,
openvx_sobel(src, dst, dx, dy, ksize, scale, delta, borderType))
//CV_IPP_RUN_FAST(ipp_Deriv(src, dst, dx, dy, ksize, scale, delta, borderType));
sepFilter2D(src, dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
}
前三个参数是输入图像、输出图像及深度,接下来2个参数是微分的阶。
phaseCorrelate函数是利用相位相关法,给两张图片做频域配准。
modules\imgproc\src\phasecorr.cpp
cv::Point2d cv::phaseCorrelate(InputArray _src1, InputArray _src2, InputArray _window, double* response)
{
CV_INSTRUMENT_REGION();
Mat src1 = _src1.getMat();
Mat src2 = _src2.getMat();
Mat window = _window.getMat();
CV_Assert( src1.type() == src2.type());
CV_Assert( src1.type() == CV_32FC1 || src1.type() == CV_64FC1 );
CV_Assert( src1.size == src2.size);
if(!window.empty())
{
CV_Assert( src1.type() == window.type());
CV_Assert( src1.size == window.size);
}
int M = getOptimalDFTSize(src1.rows);
int N = getOptimalDFTSize(src1.cols);
Mat padded1, padded2, paddedWin;
if(M != src1.rows || N != src1.cols)
{
copyMakeBorder(src1, padded1, 0, M - src1.rows, 0, N - src1.cols, BORDER_CONSTANT, Scalar::all(0));
copyMakeBorder(src2, padded2, 0, M - src2.rows, 0, N - src2.cols, BORDER_CONSTANT, Scalar::all(0));
if(!window.empty())
{
copyMakeBorder(window, paddedWin, 0, M - window.rows, 0, N - window.cols, BORDER_CONSTANT, Scalar::all(0));
}
}
else
{
padded1 = src1;
padded2 = src2;
paddedWin = window;
}
Mat FFT1, FFT2, P, Pm, C;
// perform window multiplication if available
if(!paddedWin.empty())
{
// apply window to both images before proceeding...
multiply(paddedWin, padded1, padded1);
multiply(paddedWin, padded2, padded2);
}
// execute phase correlation equation
// Reference: http://en.wikipedia.org/wiki/Phase_correlation
dft(padded1, FFT1, DFT_REAL_OUTPUT);
dft(padded2, FFT2, DFT_REAL_OUTPUT);
mulSpectrums(FFT1, FFT2, P, 0, true);
magSpectrums(P, Pm);
divSpectrums(P, Pm, C, 0, false); // FF* / |FF*| (phase correlation equation completed here...)
idft(C, C); // gives us the nice peak shift location...
fftShift(C); // shift the energy to the center of the frame.
// locate the highest peak
Point peakLoc;
minMaxLoc(C, NULL, NULL, NULL, &peakLoc);
// get the phase shift with sub-pixel accuracy, 5x5 window seems about right here...
Point2d t;
t = weightedCentroid(C, peakLoc, Size(5, 5), response);
// max response is M*N (not exactly, might be slightly larger due to rounding errors)
if(response)
*response /= M*N;
// adjust shift relative to image center...
Point2d center((double)padded1.cols / 2.0, (double)padded1.rows / 2.0);
return (center - t);
}
前两个参数是传2张图片,第三个是应用窗函数去除图像的边界效应,文档中推荐使用汉宁窗。
void cv::createHanningWindow(OutputArray _dst, cv::Size winSize, int type)
{
CV_INSTRUMENT_REGION();
CV_Assert( type == CV_32FC1 || type == CV_64FC1 );
CV_Assert( winSize.width > 1 && winSize.height > 1 );
_dst.create(winSize, type);
Mat dst = _dst.getMat();
int rows = dst.rows, cols = dst.cols;
AutoBuffer _wc(cols);
double* const wc = _wc.data();
double coeff0 = 2.0 * CV_PI / (double)(cols - 1), coeff1 = 2.0f * CV_PI / (double)(rows - 1);
for(int j = 0; j < cols; j++)
wc[j] = 0.5 * (1.0 - cos(coeff0 * j));
if(dst.depth() == CV_32F)
{
for(int i = 0; i < rows; i++)
{
float* dstData = dst.ptr(i);
double wr = 0.5 * (1.0 - cos(coeff1 * i));
for(int j = 0; j < cols; j++)
dstData[j] = (float)(wr * wc[j]);
}
}
else
{
for(int i = 0; i < rows; i++)
{
double* dstData = dst.ptr(i);
double wr = 0.5 * (1.0 - cos(coeff1 * i));
for(int j = 0; j < cols; j++)
dstData[j] = wr * wc[j];
}
}
// perform batch sqrt for SSE performance gains
cv::sqrt(dst, dst);
}
opencv-4.2.0\modules\features2d\src\matchers.cpp中的代码:
内含3种匹配算法:
class CV_EXPORTS_W DescriptorMatcher : public Algorithm
{
public:
CV_WRAP void match( InputArray queryDescriptors, InputArray trainDescriptors,
CV_OUT std::vector& matches, InputArray mask=noArray() ) const;
CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
CV_OUT std::vector >& matches, int k,
InputArray mask=noArray(), bool compactResult=false ) const;
CV_WRAP void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors,
CV_OUT std::vector >& matches, float maxDistance,
InputArray mask=noArray(), bool compactResult=false ) const;
CV_WRAP void match( InputArray queryDescriptors, CV_OUT std::vector& matches,
InputArrayOfArrays masks=noArray() );
CV_WRAP void knnMatch( InputArray queryDescriptors, CV_OUT std::vector >& matches, int k,
InputArrayOfArrays masks=noArray(), bool compactResult=false );
CV_WRAP void radiusMatch( InputArray queryDescriptors, CV_OUT std::vector >& matches, float maxDistance,
InputArrayOfArrays masks=noArray(), bool compactResult=false );
。。。。。。
};
DescriptorMatcher内含纯虚函数clone()
match里面还是调knnMatch,所以实际上是knnMatch和radiusMatch两种算法。
继承DescriptorMatcher
class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher
{
public:
CV_WRAP FlannBasedMatcher( const Ptr& indexParams=makePtr(),
const Ptr& searchParams=makePtr() );
......
};
(1)clone
创建一个实例
(2)算法
算法没有重载,也没有重写,直接是父类的函数。
void DescriptorMatcher::knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
std::vector >& matches, int knn,
InputArray mask, bool compactResult ) const
{
CV_INSTRUMENT_REGION();
Ptr tempMatcher = clone(true);
tempMatcher->add(trainDescriptors);
tempMatcher->knnMatch( queryDescriptors, matches, knn, std::vector(1, mask.getMat()), compactResult );
}
void DescriptorMatcher::knnMatch( InputArray queryDescriptors, std::vector >& matches, int knn,
InputArrayOfArrays masks, bool compactResult )
{
CV_INSTRUMENT_REGION();
if( empty() || queryDescriptors.empty() )
return;
CV_Assert( knn > 0 );
checkMasks( masks, queryDescriptors.size().height );
train();
knnMatchImpl( queryDescriptors, matches, knn, masks, compactResult );
}
核心功能用impl技术存在knnMatchImpl里面了。