[pai-diffusion]pai的easynlp的clip模型训练

EasyNLP带你玩转CLIP图文检索 - 知乎作者:熊兮、章捷、岑鸣、临在导读随着自媒体的不断发展,多种模态数据例如图像、文本、语音、视频等不断增长,创造了互联网上丰富多彩的世界。为了准确建模用户的多模态内容,跨模态检索是跨模态理解的重要任务,…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/528476134

initialize_easynlp()->

train_dataset = CLIPDataset(pretrained_model_name_or_path=get_pretrain_model_path("alibaba-pai/clip_chinese_roberta_base_vit_base"),
    data_file="MUGE_MR_train_base64_part.tsv",
    max_seq_length=32,
    input_schema="text:str:1,image:str:1",
    first_sequence="text",
    second_sequence="image",
    is_training=True)
valid_dataset = CLIPDataset()

model = get_application_model(app_name='clip',...)
- easynlp.appzoo.api.ModelMapping->CLIPApp
- easynlp.appzoo.clip.model.py->CLIPApp
- CHINESE_CLIP->
- self.visual = VisualTransformer()
- self.bert = BertModel()

trainer = Trainer(model,train_dataset,user_defined_parameters,  
                evaluator=get_application_evaluator(app_name="clip",valid_dataset=valid_dataset,user_defined_parameters=user_defined_parameters,eval_batch_size=32))

trainer.train()
- for _epoch in range(self._first_epoch,int(args.epoch_num)):
      for _step,batch in enumerate(self._train_loader):    
          label_ids = batch.pop()
          forward_outputs = self._model(batch)
          loss_dict = self.model_module.compute_loss(forward_outputs,label_ids)
          _loss = loss_dict('loss')
          
          _loss.backward()

model = get_application_model_evaluation()
evaluator = get_application_evaluator()
evaluator.evaluate(model)

数据处理:

import os
import base64
import multiprocessing
from tqdm import tqdm


def process_image(image_path):
    # 从图片路径中提取中文描述
    image_name = os.path.basename(image_path)
    description = os.path.splitext(image_name)[0]

    # 将图片转换为 Base64 编码
    with open(image_path, 'rb') as f:
        image_data = f.read()
        base64_data = base64.b64encode(image_data).decode('utf-8')

    return description, base64_data


def generate_tsv(directory):
    image_paths = [os.path.join(directory, filename) for filename in os.listdir(directory) if
                   filename.endswith(('.jpg', '.png'))]

    with multiprocessing.Pool() as pool, tqdm(total=len(image_paths), desc='Processing Images') as pbar:
        results = []
        for result in pool.imap_unordered(process_image, image_paths):
            results.append(result)
            pbar.update(1)

    with open(
            '/home/image_team/image_team_docker_home/lgd/e_commerce_sd/data/vcg_furnitures_text_image/vcg_furnitures_train.tsv',
            'w', encoding='utf-8') as f:
        for description, base64_data in results:
            line = f"{description}\t{base64_data}\n"
            f.write(line)


if __name__ == '__main__':
    target_directory = "/home/image_team/image_team_docker_home/lgd/e_commerce_sd/data/vcg_furnitures_text_image/vcg_furnitures_train/img_download/"
    # import pdb;pdb.set_trace()
    generate_tsv(target_directory)

训练代码:

import torch.cuda
from easynlp.appzoo import CLIPDataset
from easynlp.appzoo import get_application_predictor, get_application_model, get_application_evaluator, \
    get_application_model_for_evaluation
from easynlp.core import Trainer, PredictorManager
from easynlp.utils import initialize_easynlp, get_args, get_pretrain_model_path
from easynlp.utils.global_vars import parse_user_defined_parameters


def main():
    # /root/.easynlp/modelzoo中
    train_dataset = CLIPDataset(
        pretrained_model_name_or_path=get_pretrain_model_path(args.pretrained_model_name_or_path),
        data_file=args.tables.split(",")[0],
        max_seq_length=args.sequence_length,
        input_schema=args.input_schema,
        first_sequence=args.first_sequence,
        second_sequence=args.second_sequence,
        is_training=True)

    valid_dataset = CLIPDataset(
        # 预训练模型名称路径,这里我们使用封装好的get_pretrain_model_path函数,来处理模型名称"alibaba-pai/clip_chinese_roberta_base_vit_base"以得到其路径,并自动下载模型
        pretrained_model_name_or_path=get_pretrain_model_path(args.pretrained_model_name_or_path),
        data_file=args.tables.split(",")[-1],
        # "data/pai/MUGE_MR_valid_base64_part.tsv"
        max_seq_length=args.sequence_length,  # 文本最大长度,超过将截断,不足将padding
        input_schema=args.input_schema,  # 输入tsv数据的格式,逗号分隔的每一项对应数据文件中每行以\t分隔的一项,每项开头为其字段标识,如label、sent1等
        first_sequence=args.first_sequence,  # 用于说明input_schema中哪些字段作为第一/第二列输入数据
        second_sequence=args.second_sequence,
        is_training=False)  # 是否为训练过程,train_dataset为True,valid_dataset为False

    model = get_application_model(
        app_name=args.app_name,  # 任务名称,这里选择文本分类"clip"
        pretrained_model_name_or_path=get_pretrain_model_path(
            args.pretrained_model_name_or_path),
        user_defined_parameters=user_defined_parameters
        # user_defined_parameters:用户自定义参数,直接填入刚刚处理好的自定义参数user_defined_parameters
    )

    trainer = Trainer(model=model,
                      train_dataset=train_dataset,
                      user_defined_parameters=user_defined_parameters,
                      evaluator=get_application_evaluator(app_name=args.app_name,
                                                          valid_dataset=valid_dataset,
                                                          user_defined_parameters=user_defined_parameters,
                                                          eval_batch_size=32))
    trainer.train()

    # 模型评估
    model = get_application_model_for_evaluation(app_name=args.app_name,
                                                 pretrained_model_name_or_path=args.checkpoint_dir,
                                                 user_defined_parameters=user_defined_parameters)

    evaluator = get_application_evaluator(app_name=args.app_name,
                                          valid_dataset=valid_dataset,
                                          user_defined_parameters=user_defined_parameters,
                                          eval_batch_size=32)
    model.to(torch.cuda.current_device())
    evaluator.evaluate(model=model)

    # 模型预测
    if test:
        predictor = get_application_predictor(app_name="clip",
                                              model_dir="./outputs/clip_model/",
                                              first_sequence="text",
                                              second_sequence="image",
                                              sequence_length=32,
                                              user_defined_parameters=user_defined_parameters)

        predictor_manager = PredictorManager(predictor=predictor,
                                             input_file="data/vcg_furnitures_text_image/vcg_furnitures_test.tsv",
                                             input_schema="text:str:1",
                                             output_file="text_feat.tsv",
                                             output_schema="text_feat",
                                             append_cols="text",
                                             batch_size=2)
        predictor_manager.run()


if __name__ == "__main__":
    initialize_easynlp()
    args = get_args()
    user_defined_parameters = parse_user_defined_parameters(
        'pretrain_model_name_or_path=alibaba-pai/clip_chinese_roberta_base_vit_base')
    args.checkpoint_dir = "./outputs/clip_model/"
    args.pretrained_model_name_or_path = "alibaba-pai/clip_chinese_roberta_base_vit_base"
    # args.n_gpu = 3
    # args.worker_gpu = "1,2,3"
    args.app_name = "clip"
    args.tables = "data/pai/MUGE_MR_train_base64_part.tsv,data/pai/MUGE_MR_valid_base64_part.tsv"
    # "data/vcg_furnitures_text_image/vcg_furnitures_train.tsv," \
    #               "data/vcg_furnitures_text_image/vcg_furnitures_test.tsv"
    # "data/pai/MUGE_MR_train_base64_part.tsv,data/pai/MUGE_MR_valid_base64_part.tsv"
    args.input_schema = "text:str:1,image:str:1"
    args.first_sequence = "text"
    args.second_sequence = "image"
    args.learning_rate = 1e-4
    args.epoch_num = 1000
    args.random_seed = 42
    args.save_checkpoint_steps = 200
    args.sequence_length = 32
    # args.train_batch_size = 2
    args.micro_batch_size = 32

    test = False

    main()

# python -m torch.distributed.launch --nproc_per_node 4 tools/train_pai_chinese_clip.py


说一点自己的想法,在我自己工作之初,我很喜欢去拆解一些框架,例如openmm系列,但其实大部分在训练过程上都是相似的,大可不必,在改动上,也没有必要对其进行流程上的大改动,兼具百家之长,了解整体pipeline,更加专注在pipeline实现和效果导向型的结果提交更加有效。

你可能感兴趣的:(视觉应用算法,大模型,多模态和生成,人工智能,深度学习,机器学习)