tensorflow2.0 分类测试

  1. Download and prepare the CIFAR10 dataset
    同样 预先下载好,放到工程目录
    https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz

  2. 将文件名称 cifar-10-batches-py.tar.gz改为cifar-10-python.tar.gz
    cp cifar-10-python.tar.gz ~./keras/datasets/cifar-10-batches-py.tar.gz

  3. docker 缺少matplotlib, 安装
    pip install matplotlib

官方 code demo

from __future__ import absolute_import, division, print_function, unicode_literals

import tensorflow as tf

from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
# file_path = "../../dataset/cifar-10-python.tar.gz"
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# Normalize pixel values to be between 0 and 1
train_images, test_images = train_images / 255.0, test_images / 255.0

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    # The CIFAR labels happen to be arrays,
    # which is why you need the extra index
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()


model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.summary()

model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

model.summary()

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

history = model.fit(train_images, train_labels, epochs=5,
                    validation_data=(test_images, test_labels))

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print("test_loss  test_acc ",test_loss, test_acc)

你可能感兴趣的:(tensorflow2.0 分类测试)