分库分表

    不管是分库还是分表,都有两种切分方式:水平切分和垂直切分。下面我们分别看看如何切分。

1、分表

(1)垂直分表
    表中的字段较多,一般将不常用的、 数据较大、长度较长的拆分到“扩展表“。一般情况加表的字段可能有几百列,此时是按照字段进行数竖直切。注意垂直分是列多的情况。

(2)水平分表
    单表的数据量太大。按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈。这种情况是不建议使用的,因为数据量是逐渐增加的,当数据量增加到一定的程度还需要再进行切分。比较麻烦。

2、分库

(1)垂直分库
一个数据库的表太多。此时就会按照一定业务逻辑进行垂直切,比如用户相关的表放在一个数据库里,订单相关的表放在一个数据库里。注意此时不同的数据库应该存放在不同的服务器上,此时磁盘空间、内存、TPS等等都会得到解决。

(2)水平分库
水平分库理论上切分起来是比较麻烦的,它是指将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。

四、分库分表之后的问题
1、联合查询困难
联合查询不仅困难,而且可以说是不可能,因为两个相关联的表可能会分布在不同的数据库,不同的服务器中。

2、需要支持事务
分库分表后,就需要支持分布式事务了。数据库本身为我们提供了事务管理功能,但是分库分表之后就不适用了。如果我们自己编程协调事务,代码方面就又开始了麻烦。

3、跨库join困难
分库分表后表之间的关联操作将受到限制,我们无法join位于不同分库的表,也无法join分表粒度不同的表, 结果原本一次查询能够完成的业务,可能需要多次查询才能完成。 我们可以使用全局表,所有库都拷贝一份。

4、结果合并麻烦
比如我们购买了商品,订单表可能进行了拆分等等,此时结果合并就比较困难。

你可能感兴趣的:(java)