【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Image Encoder

  论文:Segment Anything
  代码:https://github.com/facebookresearch/segment-anything

1. 使用SAM

  尽管官方demo玩的很花很溜,但只有能够本地运行起来,才能够查看中间过程不是,基于这篇文章,使用官方的狗狗图像,采用sam_vit_b_01ec64.pth模型,给定point,完成狗狗的分割。

  (1)狗狗图像:

【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Image Encoder_第1张图片

  (2)运行代码:

import cv2
import matplotlib.pyplot as plt
import numpy as np
from segment_anything import sam_model_registry, SamPredictor
import torch


def show_mask(mask, ax, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)
    return mask_image


def show_points(coords, labels, ax, marker_size=375):
    pos_points = coords[labels == 1]
    neg_points = coords[labels == 0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white',
               linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white',
               linewidth=1.25)


sam_checkpoint = "./sam_vit_b_01ec64.pth"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_type = "vit_b"

sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)

image = cv2.imread("./test image/image dog.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

predictor.set_image(image)

input_point = np.array([[1300, 800]])
input_label = np.array([1])

plt.figure(figsize=(10, 10))
plt.imshow(image)
show_points(input_point, input_label, plt.gca())
plt.axis('off')
plt.show()

masks, scores, logits = predictor.predict(
    point_coords=input_point,
    point_labels=input_label,
    multimask_output=True,
)
print(scores)
index = np.argmax(scores)

plt.figure(figsize=(10, 10))
plt.imshow(image)
show_mask(masks[index], plt.gca())
show_points(input_point, input_label, plt.gca())
plt.title(f"Mask {index + 1}, Score: {scores[index]:.3f}", fontsize=18)
plt.axis('off')
plt.show()

  (3)输出结果:

【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Image Encoder_第2张图片

2. Image Encoder代码解析

(1)set_image函数

位置:【segment_anything/predictor.py --> SamPredictor类 --> set_image函数】
作用: 图像预处理:缩放、转换为Tensor,通道调整,调用set_torch_image函数

本例中狗狗图像,即输入image的 [ H , W , C ] {[H, W, C]} [H,W,C] 大小为 [ 1365 , 2048 , 3 ] {[1365, 2048, 3]} [1365,2048,3]

def set_image(
    self,
    image: np.ndarray,
    image_format: str = "RGB",
) -> None:

    assert image_format in [
        "RGB",
        "BGR",
    ], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
    if image_format != self.model.image_format:
        image = image[..., ::-1]

    # Transform the image to the form expected by the model
    # 输入image: ndarray->(H, W, 3)=(1365, 2048, 3)
    # input_image: ndarray->(H*1024/W, 1024, 3)=(683, 1024, 3) 
    input_image = self.transform.apply_image(image)  # 等比缩放图像至长边为1024

    # 转换为tensor形式:input_image_torch: tensor->[683, 1024, 3]
    input_image_torch = torch.as_tensor(input_image, device=self.device)  
    # 通道调整:input_image_torch: tensor->[1, 3, 683, 1024]
    input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
    # 调用set_torch_image函数,传入参数input_image_torch与原始图像大小(1365, 2048)
    self.set_torch_image(input_image_torch, image.shape[:2])

(2)set_torch_image函数

位置:【segment_anything/predictor.py --> SamPredictor类 --> set_torch_image函数】
作用: 图像预处理,调用image_encoder,实现图像嵌入

   def set_torch_image(
        self,
        transformed_image: torch.Tensor,
        original_image_size: Tuple[int, ...],
    ) -> None:
        
        assert (
            len(transformed_image.shape) == 4
            and transformed_image.shape[1] == 3
            and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
        ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
        self.reset_image()

        self.original_size = original_image_size   # 原始图像大小(H, W)=(1365, 2048)
        self.input_size = tuple(transformed_image.shape[-2:])  # 输入图像大小(683, 1024)
        # transformed_image.size():[1, 3, H*1024/W, 1024]————>归一化且填充到正方形
        input_image = self.model.preprocess(transformed_image)   # input_image.size():[1, 3, 1024, 1024]
        self.features = self.model.image_encoder(input_image)   # feature.size():[1, 256, 64, 64]
        self.is_image_set = True

(3)preprocess函数

位置:【segment_anything/modeling/sam.py --> sam类 --> preprocess函数】
作用: 归一化图像并将其填充为正方形

 def preprocess(self, x: torch.Tensor) -> torch.Tensor:
        """Normalize pixel values and pad to a square input."""
        # 归一化, 均值和标准差已经定义好了, 至于为什么是这个哩, 猜测可能是整个数据集的
        # pixel_mean=[123.675, 116.28, 103.53], pixel_std=[58.395, 57.12, 57.375]
        x = (x - self.pixel_mean) / self.pixel_std

        # Pad
        h, w = x.shape[-2:]  # 输入图像大小 h=683, w=1024
        # Image Encoder的图像输入大小为1024
        padh = self.image_encoder.img_size - h  # 1024-683=341
        padw = self.image_encoder.img_size - w  # 1024-1024=0
        x = F.pad(x, (0, padw, 0, padh))  # 补零填充, x.size=[1, 3, 1024, 1024]
        return x

(4)ImageEncoderViT类

位置:【segment_anything/modeling/image_encoder.py -->ImageEncoderViT类】
作用: 实现图像嵌入,主要包括patch_embed、block和neck三个部分

class ImageEncoderViT(nn.Module):
    def __init__(
        self,
        img_size: int = 1024,
        patch_size: int = 16,
        in_chans: int = 3,
        embed_dim: int = 768,
        depth: int = 12,
        num_heads: int = 12,
        mlp_ratio: float = 4.0,
        out_chans: int = 256,
        qkv_bias: bool = True,
        norm_layer: Type[nn.Module] = nn.LayerNorm,
        act_layer: Type[nn.Module] = nn.GELU,
        use_abs_pos: bool = True,
        use_rel_pos: bool = False,
        rel_pos_zero_init: bool = True,
        window_size: int = 0,
        global_attn_indexes: Tuple[int, ...] = (),
    ) -> None:
        """
        Args:
            img_size (int): Input image size.
            patch_size (int): Patch size.
            in_chans (int): Number of input image channels.
            embed_dim (int): Patch embedding dimension.
            depth (int): Depth of ViT.
            num_heads (int): Number of attention heads in each ViT block.
            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
            qkv_bias (bool): If True, add a learnable bias to query, key, value.
            norm_layer (nn.Module): Normalization layer.
            act_layer (nn.Module): Activation layer.
            use_abs_pos (bool): If True, use absolute positional embeddings.
            use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
            window_size (int): Window size for window attention blocks.
            global_attn_indexes (list): Indexes for blocks using global attention.
        """
        super().__init__()
        self.img_size = img_size  # 输入图像大小1024
		
		# 将图像划分为Patch
        self.patch_embed = PatchEmbed(
            kernel_size=(patch_size, patch_size),  # 卷积核大小(16, 16)
            stride=(patch_size, patch_size),  # 卷积核步长(16, 16)
            in_chans=in_chans,  # 输入图像通道=3
            embed_dim=embed_dim,  # patch嵌入维度=768
        )
        
		# 位置嵌入
        self.pos_embed: Optional[nn.Parameter] = None
        if use_abs_pos:
            # Initialize absolute positional embedding with pretrain image size.
            self.pos_embed = nn.Parameter(
                torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
            )  # 可学习参数[1, 64, 64, 768]
		
		# Block模块
        self.blocks = nn.ModuleList()
        for i in range(depth):
            block = Block(
                dim=embed_dim,  # 嵌入维度=768
                num_heads=num_heads,  # multi-head注意机制多头的数目=12
                mlp_ratio=mlp_ratio,  # MLP隐藏层的维度变换因子=4
                qkv_bias=qkv_bias,  # qkv全连接层的偏置=True
                norm_layer=norm_layer,  # 归一化层: nn.LayerNorm
                act_layer=act_layer,  # 激活函数层: nn.GELU
                use_rel_pos=use_rel_pos,  # 是否添加相对位置嵌入=False
                rel_pos_zero_init=rel_pos_zero_init,  # 零初始化相对位置参数=True
                # sam_vit_b中global_attn_indexes=encoder_global_attn_indexes=[2, 5, 8, 11]
                # 12个Block中的window_size[14,14,0,14,14,0,14,14,0,14,14,0]
                window_size=window_size if i not in global_attn_indexes else 0,
                input_size=(img_size // patch_size, img_size // patch_size),  # 输入大小(64, 64)
            )
            self.blocks.append(block)
		
		# 输出neck模块
        self.neck = nn.Sequential(
            nn.Conv2d(
                embed_dim,
                out_chans,
                kernel_size=1,
                bias=False,
            ),
            LayerNorm2d(out_chans),
            nn.Conv2d(
                out_chans,
                out_chans,
                kernel_size=3,
                padding=1,
                bias=False,
            ),
            LayerNorm2d(out_chans),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # 输入x.size():[1, 3, 1024, 1024]
        x = self.patch_embed(x)  # [1, 64, 64, 768]
        # 添加位置嵌入
        if self.pos_embed is not None:
            x = x + self.pos_embed  # [1, 64, 64, 768]
		# attention模块
        for blk in self.blocks:
            x = blk(x)  # [1, 64, 64, 768]

        x = self.neck(x.permute(0, 3, 1, 2))  # 输出x.size():[1, 256, 64, 64]

        return x

①patch_embed

class PatchEmbed(nn.Module):
    def __init__(
        self,
        kernel_size: Tuple[int, int] = (16, 16),
        stride: Tuple[int, int] = (16, 16),
        padding: Tuple[int, int] = (0, 0),
        in_chans: int = 3,
        embed_dim: int = 768,
    ) -> None:
        
        super().__init__()

        self.proj = nn.Conv2d(
            in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj(x)  # [1, 3, 1024, 1024]——>[1, 768, 64, 64]
        # B C H W -> B H W C
        x = x.permute(0, 2, 3, 1)  # [1, 64, 64, 768]
        return x

②Block

class Block(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = True,
        norm_layer: Type[nn.Module] = nn.LayerNorm,
        act_layer: Type[nn.Module] = nn.GELU,
        use_rel_pos: bool = False,
        rel_pos_zero_init: bool = True,
        window_size: int = 0,
        input_size: Optional[Tuple[int, int]] = None,
    ) -> None:
        
        super().__init__()
        self.norm1 = norm_layer(dim)   # 归一化层nn.LayerNorm
        # attention模块
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            use_rel_pos=use_rel_pos,
            rel_pos_zero_init=rel_pos_zero_init,
            input_size=input_size if window_size == 0 else (window_size, window_size),
        )

        self.norm2 = norm_layer(dim)  # 归一化层nn.LayerNorm
        # MLP模块, mlp_ratio=4, act_layer=nn.GELU
        self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)

        self.window_size = window_size  # 窗口大小=14或0

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shortcut = x  # [1, 64, 64, 768]
        x = self.norm1(x)
        # Window partition
        if self.window_size > 0:
            H, W = x.shape[1], x.shape[2]  # H=64, W=64
            x, pad_hw = window_partition(x, self.window_size)  # x.size():[25, 14, 14, 768], Pad_hw.size():[70, 70]

        x = self.attn(x)  # [25, 14, 14, 768]
        # Reverse window partition
        if self.window_size > 0:
            x = window_unpartition(x, self.window_size, pad_hw, (H, W))  # [1, 64, 64, 768]

        x = shortcut + x   # 残差连接
        x = x + self.mlp(self.norm2(x))  # [1, 64, 64, 768]

        return x

window_partition函数:不重叠窗口划分

def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
    
    B, H, W, C = x.shape  # [1, 64, 64, 768]

    pad_h = (window_size - H % window_size) % window_size  # 需要填充的高度=6
    pad_w = (window_size - W % window_size) % window_size  # 需要填充的宽度=6
    if pad_h > 0 or pad_w > 0:
        x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))  # 填充为: [1, 70, 70, 768]
    Hp, Wp = H + pad_h, W + pad_w   # Hp=70, Wp=70
    
	# 重塑为[1, 5, 14, 5, 14, 768]
    x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)  
    # [25, 14, 14, 768]
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)  
    return windows, (Hp, Wp)

Attention类:多头注意力机制

class Attention(nn.Module):

    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = True,
        use_rel_pos: bool = False,
        rel_pos_zero_init: bool = True,
        input_size: Optional[Tuple[int, int]] = None,
    ) -> None:
        
        super().__init__()
        self.num_heads = num_heads  # head数目=12
        head_dim = dim // num_heads  # 768/12=64
        self.scale = head_dim**-0.5  # 0.125

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)  # (768, 768*3)
        self.proj = nn.Linear(dim, dim)

        self.use_rel_pos = use_rel_pos
        if self.use_rel_pos:
            assert (
                input_size is not None
            ), "Input size must be provided if using relative positional encoding."
            # initialize relative positional embeddings
            self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
            self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, H, W, _ = x.shape  # B=25, H=14, W=14
        # qkv with shape (3, B, nHead, H * W, C)
        # [25,14,14,768]->[25,14,14,2304]->[25,14*14,3,12,64]->[3,25,12,196,64]
        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        # q, k, v with shape (B * nHead, H * W, C)=[25*12,14*14,64]=[300,196,64]
        q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
		
        attn = (q * self.scale) @ k.transpose(-2, -1)  # [300,196,196] 
		# 使用相对位置编码
        if self.use_rel_pos:
            attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))

        attn = attn.softmax(dim=-1)  # [300,196,196]
        # [300,196,196]->[300,196,64]->[25,12,14,14,64]->[25,14,14,12,64]->[25,14,14,768]
        x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
        x = self.proj(x)  # [25,14,14,768]

        return x

获取相对位置编码:

def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:

    max_rel_dist = int(2 * max(q_size, k_size) - 1)  # 27
    # Interpolate rel pos if needed.
    if rel_pos.shape[0] != max_rel_dist:
        # Interpolate rel pos.
        rel_pos_resized = F.interpolate(
            rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
            size=max_rel_dist,
            mode="linear",
        )
        rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
    else:
        rel_pos_resized = rel_pos  # [27,64]

    # Scale the coords with short length if shapes for q and k are different.
    # size[14,1]:[0,1,2,3,4,5,6,7,8,9,10,11,12,13]
    q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
    # size[1,14]:[0,1,2,3,4,5,6,7,8,9,10,11,12,13]
    k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
    # size[14,14]:相对位置编码,右上角为0,左下角为26,沿x=y对称
    relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)

    return rel_pos_resized[relative_coords.long()]  # [14,14,64]

relative_coords编码如下:
【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Image Encoder_第3张图片
添加相对位置编码:

def add_decomposed_rel_pos(
    attn: torch.Tensor,
    q: torch.Tensor,
    rel_pos_h: torch.Tensor,
    rel_pos_w: torch.Tensor,
    q_size: Tuple[int, int],
    k_size: Tuple[int, int],
) -> torch.Tensor:
    
    q_h, q_w = q_size  # (14,14)
    k_h, k_w = k_size  # (14,14)
    # rel_pos_h=rel_pos_w=[27,64]
    Rh = get_rel_pos(q_h, k_h, rel_pos_h)  # 获取相对位置编码(14,14,64)
    Rw = get_rel_pos(q_w, k_w, rel_pos_w)  # 获取相对位置编码(14,14,64)

    B, _, dim = q.shape   # B=300, dim=64
    r_q = q.reshape(B, q_h, q_w, dim)  # [300, 14, 14, 64]
    rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)  # [300,14,14,14]
    rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)  # [300,14,14,14]

    # rel_h[:, :, :, :, None]=rel_w[:, :, :, None, :]=[300,14,14,14,1]
    # attn=[300,196,196]->[300,14,14,14,14]->[300,196,196]
    attn = (
        attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
    ).view(B, q_h * q_w, k_h * k_w)

    return attn

window_unpartition函数:恢复原始中间特征尺寸

def window_unpartition(
    windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
) -> torch.Tensor:
    
    Hp, Wp = pad_hw  # (70,70)
    H, W = hw  # (64,64)
    B = windows.shape[0] // (Hp * Wp // window_size // window_size)  # B=1
    # [1,5,5,14,14,768]
    x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)  # [1,70,70,768]

    if Hp > H or Wp > W:
        x = x[:, :H, :W, :].contiguous()  # 去掉填充元素[1,64,64,768]
    return x

MLP模块:

class MLPBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        mlp_dim: int,
        act: Type[nn.Module] = nn.GELU,
    ) -> None:
        super().__init__()
        self.lin1 = nn.Linear(embedding_dim, mlp_dim)
        self.lin2 = nn.Linear(mlp_dim, embedding_dim)
        self.act = act()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.lin2(self.act(self.lin1(x)))

3. ImageEncoderViT结构绘制

(1)结构打印

ImageEncoderViT(
  (patch_embed): PatchEmbed(
    (proj): Conv2d(3, 768, kernel_size=(16, 16), stride=(16, 16))
  )
  (blocks): ModuleList(
    (0-11): 12 x Block(
      (norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
      (attn): Attention(
        (qkv): Linear(in_features=768, out_features=2304, bias=True)
        (proj): Linear(in_features=768, out_features=768, bias=True)
      )
      (norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
      (mlp): MLPBlock(
        (lin1): Linear(in_features=768, out_features=3072, bias=True)
        (lin2): Linear(in_features=3072, out_features=768, bias=True)
        (act): GELU(approximate='none')
      )
    )
  )
  (neck): Sequential(
    (0): Conv2d(768, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (1): LayerNorm2d()
    (2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (3): LayerNorm2d()
  )
)

(2)结构绘制

【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Image Encoder_第4张图片

你可能感兴趣的:(深度学习,SAM,Image,Encoder,大模型)