算法与数据结构-堆

文章目录

  • 什么是堆
  • 如何实现一个堆?
  • 如何基于堆实现排序?
    • 1. 建堆
    • 2. 排序


什么是堆

堆是一种特殊的树,特殊点有二,如下:

  • 堆是一个完全二叉树;
  • 堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。

我分别解释一下这两点。

第一点,堆必须是一个完全二叉树。还记得我们之前讲的完全二叉树的定义吗?完全二叉树要求,除了最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。

第二点,堆中的每个节点的值必须大于等于(或者小于等于)其子树中每个节点的值。实际上,我们还可以换一种说法,堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值。这两种表述是等价的。

对于每个节点的值都大于等于子树中每个节点值的堆,我们叫做“大顶堆”。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫做“小顶堆”。

定义解释清楚了,你来看看,下面这几个二叉树是不是堆?

算法与数据结构-堆_第1张图片
其中第 1 个和第 2 个是大顶堆,第 3 个是小顶堆,第 4 个不是堆。除此之外,从图中还可以看出来,对于同一组数据,我们可以构建多种不同形态的堆。

如何实现一个堆?

要实现一个堆,我们先要知道,堆都支持哪些操作以及如何存储一个堆。

我之前讲过,完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间的。因为我们不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的左右子节点和父节点。

我画了一个用数组存储堆的例子,你可以先看下。
算法与数据结构-堆_第2张图片
从图中我们可以看到,数组中下标为 i 的节点的左子节点,就是下标为 2i 的节点,右子节点就是下标为 2i+1 的节点,父节点就是下标为 i / 2 的节点。

知道了如何存储一个堆,那我们再来看看,堆上的操作有哪些呢?我罗列了几个非常核心的操作,分别是往堆中插入一个元素和删除堆顶元素。(如果没有特殊说明,我下面都是拿大顶堆来讲解)。

  • 1、往堆中插入一个元素
    往堆中插入一个元素后,我们需要继续满足堆的两个特性。

    如果我们把新插入的元素放到堆的最后,你可以看我画的这个图,是不是不符合堆的特性了?于是,我们就需要进行调整,让其重新满足堆的特性,这个过程我们起了一个名字,就叫做堆化(heapify)。

    堆化实际上有两种,从下往上和从上往下。这里我先讲从下往上的堆化方法。
    算法与数据结构-堆_第3张图片
    堆化非常简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。

    我这里画了一张堆化的过程分解图。我们可以让新插入的节点与父节点对比大小。如果不满足子节点小于等于父节点的大小关系,我们就互换两个节点。一直重复这个过程,直到父子节点之间满足刚说的那种大小关系。

    算法与数据结构-堆_第4张图片
    我将上面讲的往堆中插入数据的过程,翻译成了代码,你可以结合着一块看。

public class Heap {
  private int[] a; // 数组,从下标1开始存储数据
  private int n;  // 堆可以存储的最大数据个数
  private int count; // 堆中已经存储的数据个数

  public Heap(int capacity) {
    a = new int[capacity + 1];
    n = capacity;
    count = 0;
  }

  public void insert(int data) {
    if (count >= n) return; // 堆满了
    ++count;
    a[count] = data;
    int i = count;
    while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上堆化
      swap(a, i, i/2); // swap()函数作用:交换下标为i和i/2的两个元素
      i = i/2;
    }
  }
 }

  • 2、删除堆顶元素
    从堆的定义的第二条中,任何节点的值都大于等于(或小于等于)子树节点的值,我们可以发现,堆顶元素存储的就是堆中数据的最大值或者最小值。

    假设我们构造的是大顶堆,堆顶元素就是最大的元素。当我们删除堆顶元素之后,就需要把第二大的元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后我们再迭代地删除第二大节点,以此类推,直到叶子节点被删除。

    这里我也画了一个分解图。不过这种方法有点问题,就是最后堆化出来的堆并不满足完全二叉树的特性。
    算法与数据结构-堆_第5张图片
    实际上,我们稍微改变一下思路,就可以解决这个问题。你看我画的下面这幅图。我们把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是从上往下的堆化方法。

    因为我们移除的是数组中的最后一个元素,而在堆化的过程中,都是交换操作,不会出现数组中的“空洞”,所以这种方法堆化之后的结果,肯定满足完全二叉树的特性。
    算法与数据结构-堆_第6张图片

public void removeMax() {
  if (count == 0) return -1; // 堆中没有数据
  a[1] = a[count];
  --count;
  heapify(a, count, 1);
}

private void heapify(int[] a, int n, int i) { // 自上往下堆化
  while (true) {
    int maxPos = i;
    if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
    if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
    if (maxPos == i) break;
    swap(a, i, maxPos);
    i = maxPos;
  }
}

我们知道,一个包含 n 个节点的完全二叉树,树的高度不会超过 logn。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O(logn)。

如何基于堆实现排序?

这里我们借助于堆这种数据结构实现的排序算法,就叫做堆排序。这种排序方法的时间复杂度非常稳定,是 O(n\log n),并且它还是原地排序算法。如此优秀,它是怎么做到的呢?

我们可以把堆排序的过程大致分解成两个大的步骤,建堆和排序。

1. 建堆

我们首先将数组原地建成一个堆。所谓“原地”就是,不借助另一个数组,就在原数组上操作。建堆的过程,有两种思路。

第一种是借助我们前面讲的,在堆中插入一个元素的思路。尽管数组中包含 n 个数据,但是我们可以假设,起初堆中只包含一个数据,就是下标为 1 的数据。然后,我们调用前面讲的插入操作,将下标从 2 到 n 的数据依次插入到堆中。这样我们就将包含 n 个数据的数组,组织成了堆。

第二种实现思路,跟第一种截然相反,也是我这里要详细讲的。第一种建堆思路的处理过程是从前往后处理数组数据,并且每个数据插入堆中时,都是从下往上堆化。而第二种实现思路,是从后往前处理数组,并且每个数据都是从上往下堆化。

我举了一个例子,并且画了一个第二种实现思路的建堆分解步骤图,你可以看下。因为叶子节点往下堆化只能自己跟自己比较,所以我们直接从最后一个非叶子节点开始,依次堆化就行了。
算法与数据结构-堆_第7张图片
算法与数据结构-堆_第8张图片
对于程序员来说,看代码可能更好理解一些,所以,我将第二种实现思路翻译成了代码,你可以看下。

private static void buildHeap(int[] a, int n) {
  for (int i = n/2; i >= 1; --i) {
    heapify(a, n, i);
  }
}

private static void heapify(int[] a, int n, int i) {
  while (true) {
    int maxPos = i;
    if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
    if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
    if (maxPos == i) break;
    swap(a, i, maxPos);
    i = maxPos;
  }
}

你可能已经发现了,在这段代码中,我们对下标从 n/2开始到 1 的数据进行堆化,下标是n/2+1 到 n 的节点是叶子节点,我们不需要堆化。实际上,对于完全二叉树来说,下标从 n/2+1 到 n 的节点都是叶子节点。

现在,我们来看,建堆操作的时间复杂度是多少呢?

每个节点堆化的时间复杂度是 O(logn),那 n/2+1 个节点堆化的总时间复杂度是不是就是 O(nlogn) 呢?这个答案虽然也没错,但是这个值还是不够精确。实际上,堆排序的建堆过程的时间复杂度是 O(n)。我带你推导一下。

因为叶子节点不需要堆化,所以需要堆化的节点从倒数第二层开始。每个节点堆化的过程中,需要比较和交换的节点个数,跟这个节点的高度 k 成正比。

我把每一层的节点个数和对应的高度画了出来,你可以看看。我们只需要将每个节点的高度求和,得出的就是建堆的时间复杂度。
算法与数据结构-堆_第9张图片
我们将每个非叶子节点的高度求和,就是下面这个公式:

算法与数据结构-堆_第10张图片
这个公式的求解稍微有点技巧,不过我们高中应该都学过:把公式左右都乘以 2,就得到另一个公式 S2。我们将 S2 错位对齐,并且用 S2 减去 S1,可以得到 S。
算法与数据结构-堆_第11张图片
S 的中间部分是一个等比数列,所以最后可以用等比数列的求和公式来计算,最终的结果就是下面图中画的这个样子。
算法与数据结构-堆_第12张图片
因为 h=logn,代入公式 S,就能得到 S=O(n),所以,建堆的时间复杂度就是 O(n)。

2. 排序

建堆结束之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。我们把它跟最后一个元素交换,那最大元素就放到了下标为 n 的位置。

这个过程有点类似上面讲的“删除堆顶元素”的操作,当堆顶元素移除之后,我们把下标为 n 的元素放到堆顶,然后再通过堆化的方法,将剩下的 n-1 个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是 n-1 的位置,一直重复这个过程,直到最后堆中只剩下标为 1 的一个元素,排序工作就完成了。

算法与数据结构-堆_第13张图片
堆排序的过程,我也翻译成了代码。结合着代码看,你理解起来应该会更加容易。

// n表示数据的个数,数组a中的数据从下标1到n的位置。
public static void sort(int[] a, int n) {
  buildHeap(a, n);
  int k = n;
  while (k > 1) {
    swap(a, 1, k);
    --k;
    heapify(a, k, 1);
  }
}

现在,我们再来分析一下堆排序的时间复杂度、空间复杂度以及稳定性。

整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n),排序过程的时间复杂度是 O(n\log n),所以,堆排序整体的时间复杂度是 O(n\log n)。

堆排序不是稳定的排序算法,因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以就有可能改变值相同数据的原始相对顺序。

今天的内容到此就讲完了。我这里要稍微解释一下,在前面的讲解以及代码中,我都假设,堆中的数据是从数组下标为 1 的位置开始存储。那如果从 0 开始存储,实际上处理思路是没有任何变化的,唯一变化的,可能就是,代码实现的时候,计算子节点和父节点的下标的公式改变了。

如果节点的下标是 i,那左子节点的下标就是 2i+1,右子节点的下标就是 2i+2,父节点的下标就是(i-1)/2。

你可能感兴趣的:(算法与数据结构,数据结构,算法)