- 【YOLOv8杂草作物目标检测】
stsdddd
YOLO目标检测目标检测YOLO目标检测人工智能
YOLOv8杂草目标检测算法介绍模型和数据集下载算法介绍YOLOv8在禾本科杂草目标检测方面有显著的应用和效果。以下是一些关键信息的总结:农作物幼苗与杂草检测系统:基于YOLOv8深度学习框架,通过2822张图片训练了一个目标检测模型,用于检测田间的农作物幼苗与杂草对象。该系统支持图片、视频以及摄像头进行目标检测,并能保存检测结果。系统界面可实时显示目标位置、目标总数、置信度、用时等信息。YOLO
- Nginx 集群测试
小馋喵知识杂货铺
性能中间件
在Nginx集群的部署和维护过程中,为了确保系统的高可用性、性能和扩展性,必须进行全面的测试。以下是Nginx集群需要进行的几类主要测试:1.集群有效性测试集群有效性测试的主要目的是验证Nginx集群的基本功能是否正常工作,确保流量分发和负载均衡按预期运行。测试内容:负载均衡验证:确保Nginx按照配置的负载均衡算法(如轮询、加权轮询、IP哈希等)正确地分发请求。测试方法:使用压力测试工具模拟请求
- 【视觉算法—视频目标跟踪】基于camshift实现视频目标实时追踪
明月下
视觉算法opencvpython音视频
本文代码功能:1.获取摄像头,实时显示2.鼠标获取第一帧中的目标roi区域3.在视频中实时对目标进行追踪。4.两种目标追踪的方式:‘meanshift’,‘camshift’5.保存视频代码准备新建test.py,复制以下代码:importcv2ascvimportnumpyasnpglobalmin_y,height,min_x,width#1代表打开外置摄像头,外置多个摄像头可依此枚举0,1,
- Python 数据建模完整流程指南
木觞清
3天入门Pythonpython开发语言
在数据科学和机器学习中,建模是一个至关重要的过程。通过有效的数据建模,我们能够从原始数据中提取有用的洞察,并为预测或分类任务提供支持。在本篇博客中,我们将通过Python展示数据建模的完整流程,包括数据准备、建模、评估和优化等步骤。1.导入必要的库在进行任何数据分析或建模之前,首先需要导入必需的Python库。这些库提供了各种工具和算法,帮助我们更高效地完成任务。importnumpyasnpim
- 整理一下一些Qt/C++第三方库
MayZork
qt开发语言c++
boost一个广泛的C++库集合,提供了大量的功能模块,包括但不限于数据结构、算法、并发编程、网络编程、文件系统、正则表达式、序列化等。poco也是一个广泛的C++库集合,提供了一套丰富的功能模块,包含网络通信、HTTP、文件系统、XML、JSON、数据库等。libevent轻量级的C语言库,主要用于异步网络编程。它提供了对I/O复用的支持,使得开发者可以在单线程中同时处理多个连接。QCustom
- 随机森林分类算法原理与实验分析
ningaiiii
机器学习与深度学习随机森林分类算法
随机森林分类算法原理与实验分析1.引言随机森林(RandomForest)是一种集成学习方法,它通过构建多个决策树并结合它们的预测结果来进行分类。你可以把它想象成一个“团队决策”的过程:团队中的每个成员(决策树)都独立发表意见,最后通过投票决定最终结果。这种方法不仅提高了模型的准确性,还增强了模型的稳定性和鲁棒性。随机森林的主要特点是通过随机选择样本和特征来构建多个决策树,从而避免单棵决策树可能产
- 快速傅里叶变换
华东算法王(原聪明的小孩子
小孩哥总结MIT线性代数线性代数矩阵
快速傅里叶变换(FFT)快速傅里叶变换(FFT)是一种高效的算法,用于计算离散傅里叶变换(DFT)和其逆变换。傅里叶变换是一种重要的数学工具,广泛应用于信号处理、图像分析、数据压缩、声音合成等领域。传统的离散傅里叶变换算法的计算复杂度较高,而快速傅里叶变换通过减少计算量,大大提高了运算速度。1.离散傅里叶变换(DFT)离散傅里叶变换(DFT)将离散的时间信号变换到频域。对于一个长度为(N)的离散序
- 动态规划算法----回文串问题
阿_北
算法动态规划c++
引言在算法的世界里,回文串问题一直是一个经典且富有挑战性的题目。而动态规划作为一种强大的算法思想,为解决这类问题提供了高效且优雅的解决方案。本文将深入探讨如何运用动态规划算法来解决回文串相关问题,从问题描述、动态规划思路,到代码实现与复杂度分析,全面剖析这一过程。回文串问题描述回文串是指一个字符串从左到右读和从右到左读是完全一样的,例如“level”、“madam”等。常见的回文串问题有:给定一个
- BERT详解
comli_cn
大模型笔记bert人工智能深度学习
1.背景结构1.1基础知识BERT(BidirectionalEncoderRepresentationsfromTransformers)是谷歌提出,作为一个Word2Vec的替代者,其在NLP领域的11个方向大幅刷新了精度,可以说是前几年来自残差网络最优突破性的一项技术了。论文的主要特点以下几点:使用了双向Transformer作为算法的主要框架,之前的模型是从左向右输入一个文本序列,或者将l
- Flink 常见面试题
知否&知否
flink大数据kafka
1、Flink的四大特征(基石)checkpoint:基于Chandy-Lamport算法,实现了分布式一致性快照,提供了一致性的语义。State:丰富的StateAPI。ValueState,ListState,MapState,BroadcastState.Time:实现了Watemark机制,乱序数据处理,迟到数据容忍。Window:开箱即用的滚动、滑动、会话窗口。以及灵活的自定义窗口。2、
- 华为OD机试E卷 --跳格子3 --24年OD统一考试(Java & JS & Python & C & C++)
飞码创造者
最新华为OD机试题库2024华为odjavajavascriptpythonc语言
文章目录题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码c++算法源码题目描述小明和朋友们一起玩跳格子游戏,每个格子上有特定的分数score=[1,-1,-6,7,-17,7],从起点score[0]开始,每次最大的步长为k,请你返回小明跳到终点score[n-1]时,能得到的最大得分。输入描述第一行输入总的格子数量n第二行输入每个格子的分数score[i]第三
- 重生之我在异世界学编程之算法与数据结构:算法复杂度介绍篇
就爱学编程
数据结构与算法算法数据结构排序算法
大家好,这里是小编的博客频道小编的博客:就爱学编程很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!!本文目录引言正文一时间复杂度1.常数时间复杂度O(1)2.线性时间复杂度O(n)3.对数时间复杂度O(logn)4.平方时间复杂度O(n^2)5.指数时间复杂度O(2^n)二空间复杂度(1)空间复杂度的定义与重要性(2)常见的空间复杂度类型及介绍1.常数空间复
- 重生之我在异世界学编程之算法与数据结构:深入静态顺序表篇
就爱学编程
数据结构与算法算法数据结构
大家好,这里是小编的博客频道小编的博客:就爱学编程很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!!本文目录引言正文一、顺序表的概念及结构1.顺序表的定义2.顺序表的结构3.顺序表的初始化二、顺序表的基本操作(静态)1.插入操作2.删除操作3.查找操作4.更新操作5.获取元素操作6.遍历操作7.求顺序表的长度8.判断顺序表是否为空快乐的时光总是短暂,咱们下篇
- C语言入门算法——明明的随机数
0X78
C语言算法c语言数据结构
题目描述:明明想在学校中请一些同学一起做一项问卷调查,为了实验的客观性,他先用计算机生成了N个1到1000之间的随机整数(N≤100),对于其中重复的数字,只保留一个,把其余相同的数去掉,不同的数对应着不同的学生的学号。然后再把这些数从小到大排序,按照排好的顺序去找同学做调查。请你协助明明完成“去重”与“排序”的工作。输入格式输入有两行,第1行为1个正整数,表示所生成的随机数的个数N。第2行有N个
- MATLAB语言的计算机基础
疯狂小小小码农
包罗万象golang开发语言后端
MATLAB语言的计算机基础引言在当今信息技术飞速发展的时代,编程能力已成为当代人士必备的一项基本技能。MATLAB(矩阵实验室)作为一种高级编程语言和环境,广泛应用于数据分析、算法开发、模型创建、数字图像处理和计算机视觉等多个领域。MATLAB以其强大的矩阵运算和可视化能力,成为了科研人员和工程师的重要工具,尤其在数学、物理、工程等学科中,它的应用不可或缺。本文将从MATLAB的基本概念、环境搭
- 迅翼SwiftWing | ROS 固定翼开源仿真平台正式发布!
迅翼SwiftWing
ROSPX4固定翼控制器开源python无人机
经过前期内测调试,ROS固定翼开源仿真平台今日正式上线!现平台除适配PX4+ROS环境外,也已实现AP+ROS环境下的单机飞行控制仿真适配。欢迎大家通过文末链接查看项目地址以及具体使用手册。1平台简介ROS固定翼仿真平台旨在实现固定翼无人机决策、规划和控制仿真,区别于传统基于Matlab/Simulink的仿真方案:高度封装:平台将基础无人机控制算法封装为可复用的类,从而有效简化了开发流程。同时,
- 华为OD机试E卷 --堆栈中的剩余数字--24年OD统一考试(Java & JS & Python & C & C++)
飞码创造者
最新华为OD机试题库2024java华为odjavascriptpythonjsc语言
文章目录题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码c算法源码题目描述向一个空栈中依次存入正整数,假设入栈元素n(1<=n<=2^31-1)按顺序依次为nx…n4、n3、n2、n1,每当元素入栈时,如果n1=n2+…+ny(y的范围[2,x],1<=x<=1000),则n1~ny全部元素出栈,重新入栈新元素m(m=2n1)。如:依次向栈存入6、1、2、3,当
- 华为OD机试E卷 --机器人活动区域--24年OD统一考试(Java & JS & Python & C & C++)
飞码创造者
最新华为OD机试题库2024华为od机器人javajavascriptpythonjs
文章目录题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码c算法源码c++算法源码题目描述现有一个机器人,可放置于M×N的网格Q中任意位置,每个网格包含一个非负整数编号。当相邻网格的数字编号差值的绝对值小于等于1时,机器人可在网格间移动问题:求机器人可活动的最大范围对应的网格点数目。说明:1)网格左上角坐标为(0,0),右下角坐标为(m-1,n-1)2)机器人只能
- 「C/C++」C++关键字 之 mutable 可变变量关键字
何曾参静谧
c语言c++java
✨博客主页何曾参静谧的博客(✅关注、点赞、⭐收藏、转发)全部专栏(专栏会有变化,以最新发布为准)「Win」Windows程序设计「IDE」集成开发环境「定制」定制开发集合「C/C++」C/C++程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「UG/NX」BlockUI集合「Py」Python程序设计「Math」探秘数学世界「PK」Paras
- 试题转excel;word转excel;大风车excel(1.1更新)
流形填表
excelword
更新了大风车excel1.1版本主要优化在算法层面:1.0版本试题解析的成功率为95%,现在1.1版本已经优化到解析成功率为99%一、问题描述一名教师朋友,偶尔会需要整理一些高质量的题目到excel中以往都是手动复制搬运,几百道题几乎需要一个下午的时间关键这些事,枯燥无聊费眼睛,实在是看起来就很蠢的工作就想着做一个工具,可以自动处理这个工作,自动将word试题按照要求写入excel中,自动整理试题
- 行为识别的方法
人工智能专属驿站
深度学习
行为识别主要有以下几大类方法,每类方法各有特点及典型算法:传统方法特点:利用手工设计特征对行为进行表征,再用统计学习的分类方法进行识别。需一定专业知识设计特征,耗费人力物力,对复杂场景、遮挡等适应性差,但对简单背景、规则动作识别效果尚可。典型算法:时空关键点(Space-TimeInterestPoints):基于视频图像中的关键点在时空维度上的变化来提取动作特征,但可能忽略视频细节,泛化能力较弱
- 《深入浅出HTTPS》读书笔记(29):TLS/SSL协议
earthzhang2021
网络协议算法开发语言httpsssl
《深入浅出HTTPS》读书笔记(29):TLS/SSL协议TLS/SSL协议是一系列算法的组合,相比密码学算法来说,TLS/SSL协议的复杂性就更大了,主要体现在以下方面。◎协议设计的复杂性:一个完整的解决方案考虑的问题非常多,需要考虑扩展性、适用性、性能等方面,一旦方案设计不充分,攻击者不用攻击特定的密码学算法,而会基于协议进行攻击。◎协议实现的严谨性:即使协议设计是完美的,在实现协议的时候,也
- 自动驾驶中的混合决策架构
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大数据AI人工智能大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
自动驾驶中的混合决策架构关键词:自动驾驶、混合决策架构、决策模型、算法、数学模型、项目实战摘要:本文将深入探讨自动驾驶中的混合决策架构,从基础理论到实际应用,全面解析这一领域的核心概念、算法原理及其在自动驾驶中的具体应用。通过详细的项目实战案例,本文旨在为读者提供全面的技术指导和深刻的思考。第一部分:自动驾驶基础理论第1章:自动驾驶概述自动驾驶技术的发展背景源于人类对便捷、安全和高效的交通出行的需
- Rabbitmq源码分析,重复消费问题的redis或数据库代码实现
xweiran
rabbitmq分布式java架构jvm数据结构后端
目录底层源码解析自定义唯一id算法MessageProperties类的相关实现自定义消息ID生成器配置和使用Rabbitmq是怎么判断是不是重复消息的呢?通过Redis的幂等性处理消息消费者实现分布式锁实现的重复检测完整的消息处理流程基于数据库实现Mapper接口消息处理服务RabbitMQ消息消费者底层源码解析RabbitMQ判断重复消息主要通过消息的唯一标识(MessageId)和幂等性处理
- Python AI教程之二十一:监督学习之支持向量机(SVM)算法
潜洋
人工智能Python中级支持向量机算法机器学习python
支持向量机(SVM)算法支持向量机(SVM)是一种功能强大的机器学习算法,广泛用于线性和非线性分类以及回归和异常值检测任务。SVM具有很强的适应性,适用于各种应用,例如文本分类、图像分类、垃圾邮件检测、笔迹识别、基因表达分析、人脸检测和异常检测。SVM特别有效,因为它们专注于寻找目标特征中不同类别之间的最大分离超平面,从而使其对二分类和多分类都具有鲁棒性。在本大纲中,我们将探讨支持向量机(SVM)
- ACwing算法备战蓝桥杯——刷题
切勿踌躇不前
算法学习笔记算法蓝桥杯
BFS:全球变暖:你有一张某海域N×N像素的照片,”.”表示海洋、”#”表示陆地,如下所示:........##.....##........##...####....###........其中”上下左右”四个方向上连在一起的一片陆地组成一座岛屿,例如上图就有2座岛屿。由于全球变暖导致了海面上升,科学家预测未来几十年,岛屿边缘一个像素的范围会被海水淹没。具体来说如果一块陆地像素与海洋相邻(上下左右
- Cortex-M3(转)
oldbalck
嵌入式操作系统系统架构
原来一直在Cortex-A8上做相关算法的开发和移植,最近要在Cortex-M3上实现一小功能,所以要了解一下Cortex-M3架构,在网上看到这篇blog不错,特转载一下。http://blog.mcuol.com/User/share_119/Article/39534_1.htm首先,在学习Cortex-M3时,我们必须要知道必要的缩略语。整理如下:AMBA:先进单片机总线架构ADK:AMB
- 算法第十六期——动态规划(DP)之线性DP
小叶pyか
算法动态规划
【概述】线性动态规划,是较常见的一类动态规划问题,其是在线性结构上进行状态转移,这类问题不像背包问题、区间DP等有固定的模板。线性动态规划的目标函数为特定变量的线性函数,约束是这些变量的线性不等式或等式,目的是求目标函数的最大值或最小值。因此,除了少量问题(如:LIS、LCS、LCIS等)有固定的模板外,大部分都要根据实际问题来推导得出答案。【例题】最长公共子序列(LCS)lanqiao0J题号1
- 代码随想录算法训练营day24(0117)
Lazy.land
算法
1.复原IP地址感觉有点难,基本属于是对着题解写了,单拎出来是否有效我都没写全对。。然后是对于单层回溯逻辑那里也是一个难点,追本溯源其实还是字符串的操作没有那么熟练。题目93.复原IP地址有效IP地址正好由四个整数(每个整数位于0到255之间组成,且不能含有前导0),整数之间用'.'分隔。例如:"0.1.2.201"和"192.168.1.1"是有效IP地址,但是"0.011.255.245"、"
- 算法面试准备 - 手撕系列第一期 - Softmax
小菜鸟博士
算法面试准备-手撕系列算法人工智能面试
算法面试准备-手撕系列第一期-Softmax目录算法面试准备-手撕系列第一期-SoftmaxSoftmax原理图Softmax实现代码-复杂版和简单版本(推荐简单版本)参考Softmax原理图Softmax原理图Softmax实现代码-复杂版和简单版本(推荐简单版本)方法一:循环计算importtorchdefsoftmax(X):#X为Tensor向量,大小为(batch_size,len)#方
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><