留数法针对有理分式的拆分
一 、 ∫ 8 x + 3 ( x + 3 ) ( 2 x − 1 ) d x 一、\int\frac{8x+3}{(x+3)(2x-1)}dx\ 一、∫(x+3)(2x−1)8x+3dx
8 x + 3 ( x + 3 ) ( 2 x − 1 ) = A x + 3 + B 2 x − 1 令 x + 3 = 0 , x = − 3 , A = 8 x + 3 ( x + 3 ) ( 2 x − 1 ) = 8 × ( − 3 ) + 3 ( − 3 + 3 ) ‾ ( 2 × ( − 3 ) − 1 ) = 8 × ( − 3 ) + 3 2 × ( − 3 ) − 1 = 3 令 2 x − 1 = 0 , x = 1 2 , B = 8 x + 3 ( x + 3 ) ( 2 x − 1 ) = 8 × 1 2 + 3 ( 1 2 + 3 ) ( 2 × 1 2 − 1 ) ‾ = 8 × 1 2 + 3 1 2 + 3 = 2 \begin{aligned} & \frac{8x+3}{(x+3)(2x-1)} = \frac{A}{x+3}+\frac{B}{2x-1} \\ \\ & 令\ x+3=0 \ , \ x=-3 \ , \ \\ & \quad\quad\quad A=\frac{8x+3}{(x+3)(2x-1)}=\frac{8×(-3)+3}{\underline{(-3+3)}(2×(-3)-1)}=\frac{8×(-3)+3}{2×(-3)-1}=3\\ & \\ & 令\ 2x-1=0 \ , \ x=\frac12 \ , \ \\ & \quad\quad\quad B=\frac{8x+3}{(x+3)(2x-1)}=\frac{8×\frac12+3}{(\frac12+3)\underline{(2×\frac12-1)}}=\frac{8×\frac12+3}{\frac12+3}=2\\ & \\ \end{aligned} (x+3)(2x−1)8x+3=x+3A+2x−1B令 x+3=0 , x=−3 , A=(x+3)(2x−1)8x+3=(−3+3)(2×(−3)−1)8×(−3)+3=2×(−3)−18×(−3)+3=3令 2x−1=0 , x=21 , B=(x+3)(2x−1)8x+3=(21+3)(2×21−1)8×21+3=21+38×21+3=2
二 、 ∫ 2 x 2 − x − 1 ( x + 1 ) ( x 2 + 3 x + 1 ) d x 二、\int\frac{2x^2-x-1}{(x+1)(x^2+3x+1)}dx\ 二、∫(x+1)(x2+3x+1)2x2−x−1dx
第 一 种 拆 法 2 x 2 − x − 1 ( x + 1 ) ( x 2 + 3 x + 1 ) = A x + 1 + B x + C x 2 + 3 x + 1 令 x + 1 = 0 , x = − 1 , A = 2 x 2 − x − 1 ( x + 1 ) ( x 2 + 3 x + 1 ) = 2 × ( − 1 ) 2 − ( − 1 ) − 1 ( − 1 + 1 ) ‾ ( ( − 1 ) 2 + 3 × ( − 1 ) + 1 ) = 2 × ( − 1 ) 2 − ( − 1 ) − 1 ( − 1 ) 2 + 3 × ( − 1 ) + 1 = − 2 得 到 2 x 2 − x − 1 ( x + 1 ) ( x 2 + 3 x + 1 ) = − 2 x + 1 + B x + C x 2 + 3 x + 1 低 次 项 ( 常 数 项 ) : − 1 = ( − 2 ) × 1 + C 高 次 项 ( 二 次 项 ) : 2 = ( − 2 ) × 1 + B 解 得 : B = 4 , C = 1 所 以 , 2 x 2 − x − 1 ( x + 1 ) ( x 2 + 3 x + 1 ) = − 2 x + 1 + 4 x + 1 x 2 + 3 x + 1 第 二 种 拆 法 令 x 2 + 3 x + 1 = 0 , Δ > 0 , 则 x 2 + 3 x + 1 = ( x + 3 + 5 2 ) ( x + 3 − 5 2 ) 2 x 2 − x − 1 ( x + 1 ) ( x 2 + 3 x + 1 ) = A x + 1 + B x + 3 + 5 2 + C x + 3 − 5 2 , 处 理 方 法 参 照 第 一 类 \begin{aligned} & 第一种拆法\\ & \frac{2x^2-x-1}{(x+1)(x^2+3x+1)} = \frac{A}{x+1}+\frac{Bx+C}{x^2+3x+1} \\ \\ & 令\ x+1=0 \ , \ x=-1 \ , \ \\ & \quad\quad\quad A=\frac{2x^2-x-1}{(x+1)(x^2+3x+1)}=\frac{2×(-1)^2-(-1)-1}{\underline{(-1+1)}((-1)^2+3×(-1)+1)}=\frac{2×(-1)^2-(-1)-1}{(-1)^2+3×(-1)+1}=-2\\ & \\ & 得到\ \frac{2x^2-x-1}{(x+1)(x^2+3x+1)} = \frac{-2}{x+1}+\frac{Bx+C}{x^2+3x+1}\\ & \quad\quad\quad 低次项(常数项):\ -1=(-2)×1+C\\ & \quad\quad\quad 高次项(二次项):\ 2=(-2)×1+B \\ & \quad\quad\quad 解得:\ B=4 \ , \ C=1\\ & 所以,\frac{2x^2-x-1}{(x+1)(x^2+3x+1)} = \frac{-2}{x+1}+\frac{4x+1}{x^2+3x+1} \\ \\ & 第二种拆法\\ & 令\ x^2+3x+1=0 \ , \ \Delta > 0 \ , \ 则\ x^2+3x+1=(x+\frac{3+\sqrt5}{2})(x+\frac{3-\sqrt5}{2})\\ & \frac{2x^2-x-1}{(x+1)(x^2+3x+1)} = \frac{A}{x+1}+\frac{B}{x+\frac{3+\sqrt5}{2}} +\frac{C}{x+\frac{3-\sqrt5}{2}} \ , \ 处理方法参照第一类 \end{aligned} 第一种拆法(x+1)(x2+3x+1)2x2−x−1=x+1A+x2+3x+1Bx+C令 x+1=0 , x=−1 , A=(x+1)(x2+3x+1)2x2−x−1=(−1+1)((−1)2+3×(−1)+1)2×(−1)2−(−1)−1=(−1)2+3×(−1)+12×(−1)2−(−1)−1=−2得到 (x+1)(x2+3x+1)2x2−x−1=x+1−2+x2+3x+1Bx+C低次项(常数项): −1=(−2)×1+C高次项(二次项): 2=(−2)×1+B解得: B=4 , C=1所以,(x+1)(x2+3x+1)2x2−x−1=x+1−2+x2+3x+14x+1第二种拆法令 x2+3x+1=0 , Δ>0 , 则 x2+3x+1=(x+23+5)(x+23−5)(x+1)(x2+3x+1)2x2−x−1=x+1A+x+23+5B+x+23−5C , 处理方法参照第一类
三 、 ∫ 2 x 2 + 17 x − 16 ( x + 3 ) ( 2 x − 1 ) 2 d x 三、\int\frac{2x^2+17x-16}{(x+3)(2x-1)^2}dx\ 三、∫(x+3)(2x−1)22x2+17x−16dx
第 一 种 拆 法 2 x 2 + 17 x − 16 ( x + 3 ) ( 2 x − 1 ) 2 = A x + 3 + B 2 x − 1 + C ( 2 x − 1 ) 2 令 x + 3 = 0 , x = − 3 , A = 2 x 2 + 17 x − 16 ( x + 3 ) ( 2 x − 1 ) 2 = 2 × ( − 3 ) 2 + 17 × ( − 3 ) − 16 ( − 3 + 3 ) ‾ ( 2 × ( − 3 ) − 1 ) 2 = 2 × ( − 3 ) 2 + 17 × ( − 3 ) − 16 2 × ( − 3 ) − 1 = − 1 令 ( 2 x − 1 ) 2 = 0 , x = 1 2 , C = 2 x 2 + 17 x − 16 ( x + 3 ) ( 2 x − 1 ) 2 = 2 × ( 1 2 ) 2 + 17 × 1 2 − 16 ( 1 2 + 3 ) ( 2 × 1 2 − 1 ) 2 ‾ = 2 × ( 1 2 ) 2 + 17 × 1 2 − 16 ( 1 2 + 3 ) = − 2 利 用 特 殊 值 求 出 系 数 B , 不 妨 令 x = 0 , 对 于 2 x 2 + 17 x − 16 ( x + 3 ) ( 2 x − 1 ) 2 = − 1 x + 3 + B 2 x − 1 + − 2 ( 2 x − 1 ) 2 , x = 0 , 易 得 B = 3 第 二 种 拆 法 2 x 2 + 17 x − 16 ( x + 3 ) ( 2 x − 1 ) 2 = A x + 3 + B x + C ( 2 x − 1 ) 2 , 处 理 方 法 参 照 第 一 类 \begin{aligned} & 第一种拆法\\ & \frac{2x^2+17x-16}{(x+3)(2x-1)^2} = \frac{A}{x+3}+\frac{B}{2x-1}+\frac{C}{(2x-1)^2} \\ \\ & 令\ x+3=0 \ , \ x=-3 \ , \ \\ & \quad\quad\quad A=\frac{2x^2+17x-16}{(x+3)(2x-1)^2}=\frac{2×(-3)^2+17×(-3)-16}{\underline{(-3+3)}(2×(-3)-1)^2}=\frac{2×(-3)^2+17×(-3)-16}{2×(-3)-1}=-1\\ & \\ & 令\ (2x-1)^2=0 \ , \ x=\frac12 \ , \ \\ & \quad\quad\quad C=\frac{2x^2+17x-16}{(x+3)(2x-1)^2}=\frac{2×(\frac12)^2+17×\frac12-16}{(\frac12+3)\underline{(2×\frac12-1)^2}}=\frac{2×(\frac12)^2+17×\frac12-16}{(\frac12+3)}=-2\\ & 利用特殊值求出系数B,不妨令x=0,对于\\ & \quad\quad\quad \frac{2x^2+17x-16}{(x+3)(2x-1)^2} = \frac{-1}{x+3}+\frac{B}{2x-1}+\frac{-2}{(2x-1)^2},x=0,易得B=3\\ \\ & 第二种拆法\\ & \frac{2x^2+17x-16}{(x+3)(2x-1)^2} = \frac{A}{x+3}+\frac{Bx+C}{(2x-1)^2} \ , \ 处理方法参照第一类 \end{aligned} 第一种拆法(x+3)(2x−1)22x2+17x−16=x+3A+2x−1B+(2x−1)2C令 x+3=0 , x=−3 , A=(x+3)(2x−1)22x2+17x−16=(−3+3)(2×(−3)−1)22×(−3)2+17×(−3)−16=2×(−3)−12×(−3)2+17×(−3)−16=−1令 (2x−1)2=0 , x=21 , C=(x+3)(2x−1)22x2+17x−16=(21+3)(2×21−1)22×(21)2+17×21−16=(21+3)2×(21)2+17×21−16=−2利用特殊值求出系数B,不妨令x=0,对于(x+3)(2x−1)22x2+17x−16=x+3−1+2x−1B+(2x−1)2−2,x=0,易得B=3第二种拆法(x+3)(2x−1)22x2+17x−16=x+3A+(2x−1)2Bx+C , 处理方法参照第一类
四 、 ∫ x − 1 ( x + 1 ) ( x 2 + x + 2 ) d x 四、\int\frac{x-1}{(x+1)(x^2+x+2)}dx\ 四、∫(x+1)(x2+x+2)x−1dx
x − 1 ( x + 1 ) ( x 2 + x + 2 ) = A x + 3 + B x + C x 2 + x + 2 令 x + 1 = 0 , x = − 1 , A = x − 1 ( x + 1 ) ( x 2 + x + 2 ) = − 1 − 1 ( − 1 + 1 ) ‾ ( ( − 1 ) 2 + ( − 1 ) + 2 ) = − 1 − 1 ( − 1 ) 2 + ( − 1 ) + 2 = − 1 令 x 2 + x + 2 = 0 , Δ < 0 , 则 令 x + 1 = u ( 即 将 另 外 一 项 整 体 代 换 ) , ( u − 1 ) 2 + ( u − 1 ) + 2 = 0 ⇒ u = 1 − 2 u B x + C = x − 1 ( x + 1 ) ( x 2 + x + 2 ) = x − 1 ( x + 1 ) ( x 2 + x + 2 ) ‾ = x − 1 x + 1 = 1 − 2 u = u = x + 1 所 以 , x − 1 ( x + 1 ) ( x 2 + x + 2 ) = − 1 x + 3 + x + 1 x 2 + x + 2 \begin{aligned} & \frac{x-1}{(x+1)(x^2+x+2)} = \frac{A}{x+3}+\frac{Bx+C}{x^2+x+2} \\ \\ & 令\ x+1=0 \ , \ x=-1 \ , \ \\ & \quad\quad\quad A=\frac{x-1}{(x+1)(x^2+x+2)}=\frac{-1-1}{\underline{(-1+1)}((-1)^2+(-1)+2)}=\frac{-1-1}{(-1)^2+(-1)+2}=-1\\ & \\ & 令\ x^2+x+2=0 \ , \ \Delta < 0 \ , \ 则令\ x+1=u\ (即将另外一项整体代换) \ , \ \\ & \quad\quad\quad (u-1)^2+(u-1)+2=0\Rightarrow u= 1-\frac2u\\ & \quad\quad\quad Bx+C=\frac{x-1}{(x+1)(x^2+x+2)}=\frac{x-1}{(x+1)\underline{(x^2+x+2)}}=\frac{x-1}{x+1}\\ & \quad\quad\quad\quad\quad\quad\quad =1-\frac2u=u=x+1 \\ & 所以,\frac{x-1}{(x+1)(x^2+x+2)} = \frac{-1}{x+3}+\frac{x+1}{x^2+x+2} \\ \end{aligned} (x+1)(x2+x+2)x−1=x+3A+x2+x+2Bx+C令 x+1=0 , x=−1 , A=(x+1)(x2+x+2)x−1=(−1+1)((−1)2+(−1)+2)−1−1=(−1)2+(−1)+2−1−1=−1令 x2+x+2=0 , Δ<0 , 则令 x+1=u (即将另外一项整体代换) , (u−1)2+(u−1)+2=0⇒u=1−u2Bx+C=(x+1)(x2+x+2)x−1=(x+1)(x2+x+2)x−1=x+1x−1=1−u2=u=x+1所以,(x+1)(x2+x+2)x−1=x+3−1+x2+x+2x+1