- AI环境初识
网络飞鸥
AI人工智能
在搭建AI环境时,当前流行的技术涉及多个方面,包括开发框架、深度学习库、硬件支持以及具体的应用技术等。以下是一些主要的技术趋势和流行技术:一、开发框架与深度学习库TensorFlow:由谷歌开发的一个开源机器学习库,广泛用于研究和生产环境。它提供了强大的张量计算能力和灵活的架构,支持广泛的机器学习和深度学习算法。PyTorch:由Facebook推出,也是一个广受欢迎的开源机器学习库。PyTorc
- 数字人|通过语音和图片来创建高质量的视频
产品媛Gloria Deng
AI之眼音视频数字人talkingheadAniPortrait框架AI
简介arXiv上的计算机视觉领域论文:AniPortrait:Audio-DrivenSynthesisofPhotorealisticPortraitAnimationAniPortrait:照片级真实感肖像动画的音频驱动合成核心内容围绕一种新的人像动画合成框架展开。研究内容提出AniPortrait框架:用于生成由音频和参考肖像图像驱动的高质量动画。实现方法:分2个阶段实现第一阶段,从音频中提
- 覆盖从供应、生产、销售到运营的全过程,引领行业数智化转型新方向的智慧快消开源了
AI服务老曹
开源人工智能自动化音视频能源
智慧快消视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。基于多年的深度学习技术研究和业务应用为基础,集深度学习核心训练和推理框架、基础模型库、端到端开发套件、丰富的工具组件于一体,是中国首个自主研发、功能完备、开源开放的产业级深度学习平台。基
- 金融大模型应用的机遇与挑战
Python程序员罗宾
金融人工智能语言模型数据库自然语言处理
大模型本质特征大模型通常指大语言模型(LargeLanguageModel,LLM),是基于深度学习算法的自然语言处理技术,是通用大模型。大模型也在从单一自然语言处理模态向语音、图像等多模态大模型演进。目前国内外推出了众多的大模型,国内就不下上百款,也因此被称为“百模大战”或“千模大战”。但很多所谓的“大模型”仅是叫“大模型”而已,不管参数量多少,都不能称为真正的大模型。参数量是大模型的一个特征,
- 深度强化学习算法在金融交易决策中的优化应用【附数据】
算法与数据
算法
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 基于深度学习的股票短期趋势预测模型设计与实现【附代码】
算法与数据
深度学习人工智能
,我们首先对股票的基本交易数据进行了清洗和预处理,包括去除异常值、填补缺失值等。同时,我们还挖掘了多个可能影响股票价格走势的因子,如成交量、市盈率、市净率等,并将这些因子作为特征加入到数据集中。通过特征工程,我们进一步扩展了数据集,提高了模型的输入质量。在模型构建方面,我们采用了LSTM网络来处理时间序列数据。LSTM网络具有记忆功能,能够捕捉数据中的长期依赖关系,这对于股票价格走势的预测至关重要
- GPU与FPGA加速:硬件赋能AI应用
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
GPU与FPGA加速:硬件赋能AI应用1.背景介绍1.1人工智能的兴起人工智能(AI)在过去几年中经历了爆炸式增长,成为推动科技创新的核心动力。从语音识别和计算机视觉,到自然语言处理和推荐系统,AI已广泛应用于各个领域。然而,训练和部署AI模型需要大量计算资源,这对传统的CPU架构提出了巨大挑战。1.2硬件加速的必要性为满足AI算法对计算能力的巨大需求,硬件加速技术应运而生。专用硬件如GPU(图形
- DeepSeek 与网络安全:AI 在网络安全领域的应用与挑战
一ge科研小菜菜
人工智能运维网络
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注1.引言在当今数字化时代,网络安全已成为国家、企业和个人面临的重要挑战。从传统的病毒、木马攻击,到高级持续性威胁(APT)、零日漏洞和供应链攻击,网络威胁的形式日益复杂。与此同时,人工智能(AI)技术的快速发展正在为网络安全提供全新的解决方案,而DeepSeek作为AI领域的新兴力量,也正在探索如何利用深度学习和大规模语言模型(LLM)加强网络安
- 从零开始Real-ESRGAN的复现
晒阳光的咸鱼
超分辨率重建python
前言要初步了解Real-ESRGAN,可以看我之前发布的博客。初学Real-Esrgan-CSDN博客本文主要是对Real-ESRGAN的一个复现,主要就是对环境的配置进行记录,因为是实现之后才做的记录,所以只能尽可能的对其进行复现。大家可以看一下这个博主的文章进行一个参考。【论文阅读+测试】Real-Esrgan超分辨率算法_realesrgan-CSDN博客项目开始首先,我们要知道Real-E
- 手撸 chatgpt 大模型:单词向量化编码和绝对位置编码算法
coding 迪斯尼
chatgpt算法人工智能大语言模型
在上一节中,我们将每个单词转换为一个表示数字的标记(token)。现在,我们需要将这个数字映射到一个向量上,这个向量称为嵌入(embedding)。在深度学习中,所有无法通过传统数据结构描述的对象都会被用一个向量表示,例如图像、语音、单词、音频等。最初,向量中的各个字段会被初始化为随机数,然后通过大量的数据和深度学习模型来训练这些向量。训练过程逐步改变向量字段的值,从而使这些字段包含某种“知识”。
- 生成对抗网络(GAN):从概念到代码实践(附代码)
全栈你个大西瓜
人工智能计算机视觉人工智能GAN网络对抗学习手势识别生成器与鉴别器生成对抗网络
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- MTCNN 人脸检测技术揭秘:原理、实现与实战(附代码)
全栈你个大西瓜
人工智能计算机视觉人工智能MTCNN人脸检测卷积神经网络
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- 目前(2025年2月)计算机视觉(CV)领域一些表现优异的深度学习模型
空空转念
深度学习系列计算机视觉深度学习人工智能
按任务类型分类介绍:图像分类CoCa:结合对比学习和生成学习,通过对比损失对齐图像和文本嵌入,并使用标题生成损失预测文本标记。它在图像分类、跨模态检索和图像描述等任务中表现出色,且仅需极少的任务特定微调。PaLI:这是一个多模态模型,结合了40亿参数的视觉Transformer(ViT)和多种大型语言模型(LLM),并在包含100多种语言的100亿图像和文本数据集上进行训练。PaLI在图像描述、视
- Python——生成AIGC图像
朱剑君
AIGC人工智能python
文章目录一、背景介绍二、效果图展示三、完整代码四、分步解释五、实用建议1)提示词技巧2)性能优化3)常见问题处理4)扩展功能建议六、注意事项1.硬件要求2.法律合规3.模型安全一、背景介绍AIGC(AI-GeneratedContent),即由人工智能生成的内容,涵盖了文本、图像、音频、视频等各种形式。通过深度学习、生成对抗网络(GAN)和扩散模型等技术,AIGC能够生成高度逼真、具有艺术性的内容
- 图像处理:模拟色差的生成
何以为皇
图像处理人工智能
图像处理:模拟色差的实战案例在做瓷砖瑕疵检测的过程中,需要检测色差。但在实际生产环境中,瓷砖色差检测的数据量较少,无法直接获取足够的数据来训练和优化深度学习模型。于是就考虑通过人为生成色差数据的方式来扩充数据集,进行色差的模拟。1.什么是色差?色差(ColorDifference)是指两种颜色之间的视觉差异。在色彩科学中,CIEDE2000是目前最先进的色差计算方法之一。然而,CIEDE1976也
- python工具——pypinyin 汉字转换拼音
xiaoming0018
pythonpythonlist
把汉字转成拼音后可以进行深度学习分类,做内容识别1.安装pipinstallpypinyin将汉字转换为拼音并生成slug字符串importpypinyinfrompypinyinimportStylecontent=pypinyin.slug('汉语拼音')print(content)#E:\python\>pythonpinyin.py#han-yu-pin-yin修改分隔字符串importp
- 淘系图搜API接入与使用全解析
数据小爬虫.网站开发-Brad
各大电商平台api国际平台API1688python算法前端框架需求分析AI编程
淘系图搜API接入与使用全解析一、接口概述淘系图搜API(即淘宝/天猫以图搜货接口)允许开发者通过上传商品图片,获取淘宝平台上的相似商品列表。其核心技术基于阿里巴巴的深度学习模型,支持服饰、家居、3C等多品类识别,广泛应用于比价、找同款、商品推荐等场景。二、接入准备资质要求:企业开发者需提供营业执照、应用场景说明(如“电商比价工具”)。个人开发者权限受限,建议通过第三方API服务商(如数位、Dat
- 深度学习革命背后:DBN、AlexNet、GAN 等神级架构,究竟藏着怎样的 AI 崛起密码?(附deepseek)
universe_code
人工智能python深度学习经验分享
深度学习革命**3.深度学习革命(2006年至今)****2006年:深度学习奠基——深度信念网络(DBN)****2012年:AlexNet崛起****2014年:架构创新潮****生成对抗网络(GAN)****残差网络(ResNet)****Transformer****总结**补充(deepseek)一、核心技术原理1.**混合专家架构(MoE)**2.**多头潜在注意力(MLA)**3.*
- 整理:4篇论文知识蒸馏引领高效模型新时代
mslion
多模态人工智能知识蒸馏
知识蒸馏(KnowledgeDistillation)是当前机器学习研究中的一个重要方向,特别是在模型压缩和效率优化等任务中。传统的深度学习模型往往依赖于复杂的大型网络,以获取卓越的性能。然而,这些庞大的模型对计算资源和存储空间的需求,使得它们在实际应用中,尤其是在边缘设备或移动端部署中面临巨大挑战。知识蒸馏技术致力于解决这一问题,其核心思想是通过一个“教师模型”向一个更小、更高效的“学生模型”传
- 人工智能:从基础到前沿
顾漂亮
人工智能深度学习windows
目录目录1.引言2.人工智能基础2.1什么是人工智能?2.2人工智能的历史2.3人工智能的分类3.机器学习3.1机器学习概述3.2监督学习3.3无监督学习3.4强化学习4.深度学习4.1深度学习概述4.2神经网络基础4.3卷积神经网络(CNN)4.4循环神经网络(RNN)5.自然语言处理(NLP)5.1NLP概述5.2文本预处理5.3词嵌入5.4语言模型6.计算机视觉6.1计算机视觉概述6.2图像
- 深度学习框架与边缘计算融合驱动医疗金融模型优化新路径
智能计算研究中心
其他
内容概要随着边缘计算与深度学习框架的深度融合,医疗与金融领域的模型优化正在突破传统算力与隐私保护的瓶颈。当前,TensorFlow、PyTorch等主流框架通过轻量化改造(如TensorFlowLite与PyTorchMobile)逐步适应边缘设备的资源限制,同时结合联邦学习技术构建分布式训练网络。这种技术协同不仅降低了医疗影像诊断中的数据传输延迟,还通过动态模型压缩策略(如量化与剪枝)将金融预测
- 人工智能学习框架
静默.\\
人工智能学习
人工智能学习框架概述随着人工智能技术的飞速发展,选择合适的机器学习或深度学习框架对于项目的成功至关重要。这些框架提供了强大的工具和库,使得开发者能够更高效地构建、训练和部署模型。目前市面上有许多流行的AI学习框架,每种框架都有其独特的特点和适用场景。首先,TensorFlow是由Google开发的一个开源机器学习框架,支持从简单的线性回归到复杂的神经网络等多种模型类型。它以其高度灵活性和可扩展性著
- C语言图像处理技术:从基础到高级应用
南城游子
本文还有配套的精品资源,点击获取简介:C语言在图像处理领域拥有丰富的应用,涉及计算机视觉和数字信号处理。本课程深入探讨C语言进行图像处理的各项核心技术,包括像素操作、色彩模型理解、滤波算法、色彩空间转换、边缘检测、以及图像变换等。通过详细解析,学习者将掌握如何使用C语言和OpenCV库来实现高效的图像处理,并能够解决实际问题。1.像素操作与图像基本组成数字图像处理是现代计算机视觉和图像理解的基础,
- 如何将DeepSeek集成到自己的项目中:从入门到精通
木觞清
人工智能
引言DeepSeek作为一款强大的深度学习平台,正在为开发者提供高效、灵活的AI解决方案。无论你是想构建一个图像分类系统,还是开发一个自然语言处理应用,DeepSeek都能帮助你快速实现目标。本文将详细介绍如何将DeepSeek集成到自己的项目中,并提供丰富的资源和示例代码,帮助你从入门到精通。为什么选择DeepSeek?在开始集成之前,我们先来看看DeepSeek的优势:高效的计算能力:支持GP
- 机器学习和深度学习有什么区别?
facaixxx2024
AI大模型机器学习深度学习人工智能
深度学习和机器学习有什么区别?深度学习是机器学习一个分支,机器学习包含深度学习。下面阿小云从定义、技术、数据需求、应用领域、模型复杂度和计算资源多维度来对比深度学习和机器学习的区别:二者的定义区别机器学习:是一种数据分析技术,通过算法使计算机能够在无明确编程的情况下进行学习和决策。深度学习:是机器学习的一个子领域,使用神经网络模型,尤其是深层神经网络模型,来处理、解释和分类数据。依赖算法和技术不同
- AI趋势下,软件测试工程师怎么拥抱AI
悠然的笔记本
人工智能
在AI趋势下,软件测试工程师怎么拥抱AI呢?以下是我的一些思考:一、掌握AI基础知识软件测试工程师需要学习机器学习、深度学习、自然语言处理等领域的基本原理和算法。这些基础知识有助于理解AI在测试中的应用基础,从而能够更好地利用AI技术提升测试效率和质量。二、掌握AI相关工具和技术编程语言:学习使用Python等编程语言,这是实现AI应用的常用工具之一。框架:掌握TensorFlow、PyTorch
- 深度学习之图像回归(二)
zhengyawen666
深度学习回归数据挖掘人工智能
前言这篇文章主要是在图像回归(一)的基础上对该项目进行的优化。(一)主要是帮助迅速入门理清一个深度学习项目的逻辑这篇文章则主要注重在此基础上对于数据预处理和模型训练进行优化前者会通过涉及PCA主成分分析特征选择后者通过正则化数据预处理数据预处理的原因思路链未经过处理的原始数据存在一些问题->对数据进行处理(涉及多种方法)->提升模型性能数据可能存在的问题冗余信息:数据中可能存在重复的特征或高度相关
- VGG 改进:加入GAMAttention注意力机制提升对全局信息捕捉能力
听风吹等浪起
AI改进系列深度学习cnn神经网络人工智能
目录1.GAMAttention注意力机制2.VGG加入GAMAttention模块3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.GAMAttention注意力机制GAMAttention(GlobalAttentionMechanism)是一种用于增强深度学习模型对全局信息捕捉能力的注意力机制。它通过引入全局上下文信息,帮助模型更好地理解输入数据
- 【深度学习】矩阵的理解与应用
大数据追光猿
深度学习矩阵算法线性代数机器学习python深度学习
一、矩阵基础知识1.什么是矩阵?矩阵是一个数学概念,通常表示为一个二维数组,它由行和列组成,用于存储数值数据。矩阵是线性代数的基本工具之一,广泛应用于数学、物理学、工程学、计算机科学、机器学习和数据分析等领域。1.1矩阵的表示一个矩阵通常用大写字母来表示,例如AAA,而矩阵中的元素则用小写字母来表示,例如aija_{ij}aij,其中iii表示行索引,jjj表示列索引。本质:矩阵是二维的张量矩阵的
- Python中常见库 PyTorch和Pydantic 讲解
爱丫爱
pythonpytorch开发语言
PyTorch简介PyTorch是一个开源的深度学习框架,由Facebook的AI研究团队开发。它提供了丰富的工具和库,用于构建和训练各种深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)及其变体(如LSTM、GRU)、生成对抗网络(GAN)等。核心特性动态计算图:PyTorch采用动态计算图,这意味着在运行时可以动态定义和修改计算图,使得模型的构建和调试更加灵活。这与TensorFl
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc