- GitHub每日最火火火项目(1.17)
FutureUniant
github日推github人工智能计算机视觉音视频ai
OpenBMB/MiniCPM-o项目名称:OpenBMB/MiniCPM-o用途:MiniCPM-o2.6是一个适用于手机的视觉、语音和多模态直播的GPT-4o级别大语言模型(LLM)。它能够在手机上处理多种模态的数据,如视频、语音等,可用于直播场景中的实时字幕生成、语音交互问答等,为用户提供更智能的直播体验。使用场景:主要应用于手机直播领域,包括游戏直播、电商直播、娱乐直播等。主播可借助该模型
- Python基于Scapy的抓包协议分析器
dangdanding
scapypython
scapy可以使用那些协议-CSDN原理:模仿wireshark,利用python的scapy模块下的sniff()函数进行数据的抓取,并进行所谓的“消费者处理”即跟据OSI网络协议模型进行协议分析。将整个程序精简的概括得到最关键的一句代码:sniff(prn=lambdapkt:packet_consumer(pkt),stop_filter=lambdapkt:stop_sniff_event
- 史上最全!Python爬虫requests库(附案例)
疯狂的超级玛丽
PythonPython学习Python入门python爬虫开发语言学习Python基础python自学
1.requests库简介如果你正在学习Python并且找不到方向的话可以试试我这一份学习方法+籽料呀!点击领取(不要米米)Requests是一个为人类设计的简单而优雅的HTTP库。requests库是一个原生的HTTP库,比urllib3库更为容易使用。requests库发送原生的HTTP1.1请求,无需手动为URL添加查询串,也不需要对POST数据进行表单编码。相对于urllib3库,requ
- 【人工智能】人工智能的10大算法详解(优缺点+实际案例)
ChatGPT-千鑫
人工智能人工智能算法gpt-3AI编程gptcodemoss能用AI
人工智能(AI)是现代科技的重要领域,其中的算法是实现智能的核心。本文将介绍10种常见的人工智能算法,包括它们的原理、训练方法、优缺点及适用场景。1.线性回归(LinearRegression)模型原理线性回归用于建立自变量(特征)与因变量(目标)之间的线性关系。其目标是寻找最佳拟合直线,使得预测值与实际值之间的误差最小化。模型训练通过最小二乘法来最小化预测值与真实值之间的误差,得到线性回归方程的
- YOLOv8重磅升级:引入DenseOne密集网络革新主干设计,重塑YOLO目标检测性能新高度
程序员杨弋
YOLO目标检测人工智能
随着深度学习技术的不断进步,目标检测作为计算机视觉领域的重要任务之一,其性能和应用范围也在不断扩大。作为目标检测领域的佼佼者,YOLO(YouOnlyLookOnce)系列算法以其出色的性能和实时性受到了广泛关注。而最近提出的YOLOv8更是在前代版本的基础上进行了多项优化,进一步提升了检测精度和速度。然而,尽管YOLOv8已经取得了显著的进步,但在处理复杂场景和遮挡问题时,仍然存在一定的挑战。为
- 深度学习驱动的极端天气预测:时空数据异常检测与应用全解析(基于Python + TensorFlow)
AI_DL_CODE
深度学习pythontensorflow人工智能天气预测
摘要:时空数据异常检测在气象领域识别偏离正常模式的数据点,对极端天气预测至关重要。深度学习,尤其是LSTM网络,因其强大的特征学习能力在该领域显示出巨大潜力。通过整合多源气象数据,深度学习模型能够自动挖掘复杂模式和非线性关系,提高预测准确性。然而,挑战依然存在,包括数据质量问题、模型可解释性不足以及极端天气的内在复杂性和不确定性。未来,通过模型架构创新、训练算法优化以及探索深度学习在气候预测、气象
- C++学习路线:从基础到精通
byte轻骑兵
编程语言精要#C++深度探索与实战专栏开发语言c++
目录一、C++基础1.1.学习目标1.2.学习内容1.3.C++语言的特点二、面向对象编程(OOP)2.1.学习目标2.2.学习内容三、C++核心编程3.1.学习目标3.2.学习内容四、高级主题4.1.学习目标4.2.学习内容五、软件开发实践5.1.学习目标5.2.学习内容5.2.1.学习使用构建系统(如CMake)来组织和管理项目5.2.2.学习版本控制(如Git)来管理代码版本5.2.3.学习
- springboot毕设 基于java的在线学习交流平台 程序+论文
明思计算机毕设
springboot课程设计后端
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容研究背景随着互联网技术的飞速发展和全球教育资源的日益丰富,在线学习已成为人们获取知识、提升技能的重要途径。特别是在近年来,受各种因素影响,线上教育需求激增,促使在线学习交流平台不断涌现。这些平台旨在打破传统教育的时空限制,为学习者提供更加灵活、个性化的学习体验。然而,当前市场上的在线学
- 时间复杂度分为几种
青云游子
算法算法排序算法数据结构
按照快到慢排序O(1)O(logN)O(N)O(NlogN)O(N^2)例子O(1)hashsethashmap数组下标O(logN)折半查找树形遍历O(N)list查询值数组查询值O(NlogN)进阶排序快排堆排归并O(N^2)简单排序冒泡插入选择ChatGPT时间复杂度是衡量算法执行时间随输入规模增长而变化的度量。它用大O符号表示,表示算法执行时间的增长率。在算法分析中,常见的时间复杂度有以下
- C语言进阶——通讯录模拟实现
_麦麦_
C语言进阶c语言算法开发语言
个人主页:_麦麦_今日名言:只有走在路上,才能摆脱局限,摆脱执着,让所有的选择,探寻,猜测,想象都生机勃勃。——余秋雨《文化苦旅》目录一、前言二、正文1.大体框架2.界面显示3.创建通讯录4.初始化通讯录5.增加联系人6.显示联系人7.删除联系人8.查找联系人9.修改联系人10.排序联系人三、结语一、前言在上一章的结构体的学习中,相信小伙伴们或多或少都有所收获,但是有的小伙伴可能会问,结构体到底能
- Java实现简易的学生管理系统
杰仔正在努力
Javajavaidea
Java实现简易的学生管理系统文章目录Java实现简易的学生管理系统前言一、如何实现二、实现的方法(示意图)三、开始实现3.1定义类3.2定义主界面3.3实现添加功能3.4实现查询功能3.5实现删除功能3.6实现修改功能四、完整代码五、总结前言该项目主要是作为新手快速上手实操,围绕面向对象所学知识实现学生管理系统的增删改查功能,所使用的知识点主要是面向对象的三大特征使用的方法、判断语句、构造方法等
- 基于深度学习的人脸表情识别系统:YOLOv5 + YOLOv8 + YOLOv10 + UI界面 + 数据集
2025年数学建模美赛
深度学习YOLOui分类人工智能
引言随着人工智能的飞速发展,深度学习技术已广泛应用于各个领域,尤其是在计算机视觉领域。人脸识别和表情识别是其中的一个重要应用,能够在多种场景下提供重要的信息,例如安全监控、情感分析、智能客服、健康监测等。在人脸表情识别任务中,准确识别人脸的情感状态(如高兴、愤怒、悲伤等)是一个极具挑战性的任务。随着YOLO系列算法的不断进步,YOLOv5、YOLOv8和YOLOv10的推出大大提高了目标检测的精度
- 基于YOLOv8深度学习的人脸年龄检测识别系统
2025年数学建模美赛
YOLO深度学习人工智能ui数据挖掘分类
引言随着人工智能和计算机视觉的飞速发展,人脸分析技术在年龄检测领域取得了显著进展。人脸年龄检测系统在安全监控、广告推荐、健康监测等领域有广泛应用。本文将基于YOLOv8目标检测模型和UI界面,开发一个完整的人脸年龄检测识别系统。我们将详细介绍项目的技术实现、数据集构建、模型训练以及UI设计,并附上完整代码。目录引言系统架构设计数据准备公开人脸年龄数据集数据标注格式数据目录结构模型训练YOLOv8环
- 基于深度学习的人脸表情识别系统(YOLOv10+UI界面+数据集)
2025年数学建模美赛
深度学习YOLOui计算机视觉人工智能目标跟踪
在本篇博客中,我们将详细介绍如何构建一个基于深度学习的人脸表情识别系统。该系统主要由三部分组成:YOLOv10(深度学习模型)进行表情识别、UI界面展示识别结果以及数据集的准备和训练过程。我们将从系统架构、数据准备、模型训练、UI设计等多个方面进行全面讲解,最终实现一个能够实时识别并展示人脸表情的系统。目录1.系统架构2.数据集准备2.1FER2013数据集2.2数据预处理3.YOLOv10模型概
- 基于深度学习的人脸表情识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能代码
1.引言近年来,人脸表情识别在情感计算、智能人机交互、心理学研究等领域有着广泛的应用。深度学习的快速发展,使得高效、准确的人脸表情识别成为可能。通过利用卷积神经网络(CNN)和目标检测技术,可以实现实时、精准的人脸表情识别。本文将基于YOLOv8构建一个完整的人脸表情识别系统。系统集成了数据集准备、YOLOv8模型训练、实时推理以及基于PyQt5的图形用户界面(UI)。通过本文,你将学习如何实现一
- 分频器code
一条九漏鱼
verilog开发实战指南fpga开发
理论学习数字电路中时钟占有非常重要的地位。时间的计算都依靠时钟信号作为基本单元。一般而言,一块板子只有一个晶振,即只有一种频率的时钟,但是数字系统中,经常需要对基准时钟进行不同倍数的分频,进而得到各模块所需的频率。若想得到比系统时钟更慢的时钟,可以将基准时钟进行分频。若想得到比系统时钟更快的时钟,可以将基准时钟进行倍频。不管是分频还是倍频,都通过PLL实现或者用verilog描述实现。我们用ver
- 我的秋招总结
今天不coding
秋招秋招总结大厂秋招建议秋招准备
我的秋招总结个人背景双非本,985硕,科班准备情况以求职为目的学习Java的时间大概一年。八股,一开始主要是看B站黑马的八股文课程,背JavaGuide和小林coding还有面试鸭。算法,250+,刷了3遍左右项目,API开放平台+OJ在线判题系统+实习项目(检索+大模型)实习,华为线上算法实习4个月,小厂Java实习5个月,滴滴后端实习9个月offer京东零售-供应链sp美团到家-履约sp快手-
- 爬虫scrapy框架进阶-CrawlSpider, Rule
吃猫的鱼python
爬虫python数据挖掘scrapy
文章适合于所有的相关人士进行学习各位看官看完了之后不要立刻转身呀期待三连关注小小博主加收藏⚓️小小博主回关快会给你意想不到的惊喜呀⚓️文章目录scrapy中加入CrawlSpider️创建项目️提取器和规则RULEscrapy爬虫实战️分析网站️代码部分1.settings部分2.starts部分3.items部分4.重要的lyw_spider部分5.pipelines部分scrapy中加入Cra
- 【机器学习】从零开始,用线性代数解锁智能时代的钥匙!
eclipsercp
工具毕业设计python机器学习线性代数人工智能
【机器学习】从零开始,用线性代数解锁智能时代的钥匙!文章目录【机器学习】从零开始,用线性代数解锁智能时代的钥匙!引言在这个数据驱动的时代,机器学习已经成为解锁智能科技的关键。但你是否曾被复杂的数学公式和算法搞得晕头转向?别担心,这篇文章将带你从零开始,用最直观的方式掌握线性代数——机器学习的核心武器!线性代数:机器学习的基石向量:数据的基本单元Python代码示例:向量操作矩阵:多维数据的集合Py
- 《我的编程之旅:起点与展望》
dmz521521_aa
c++python
大家好,我是等天黑,一名对编程充满热情的初学者。我一直对科技领域有着浓厚的兴趣,喜欢探索各种新奇的软件和应用,也总是好奇它们背后是如何运作的。这种好奇心驱使我踏上了编程学习之路,希望能够深入了解这个充满魅力与挑战的世界,并且有朝一日能够用代码创造出有价值的东西。一、编程目标短期目标在接下来的三个月内,熟练掌握至少一种编程语言的基础语法,能够独立完成一些简单的编程项目。通过这些实践项目,积累代码编写
- Python学习(十七)——re类与正则表达式
阿卡蒂奥
Pythonpython正则表达式
re.match()匹配尝试在字符串的起始处应用该模式,返回一个匹配对象,如果没有找到匹配项,则返回一个对象。re.match().start()返回子串匹配组的开始索引printre.match('Hello','Hello,World!').start()输出:0re.match().end()返回子串匹配组的结束索引printre.match('Hello','Hello,World!').
- 《鸿蒙Next旅游应用:人工智能赋能个性化与智能导览新体验》
人工智能深度学习
随着鸿蒙Next的推出,旅游应用迎来了全新的发展机遇,借助人工智能技术能为用户带来更出色的个性化推荐和智能导览服务。鸿蒙Next与人工智能融合优势鸿蒙Next拥有强大的分布式能力和原生智能体验。其能打破设备界限,实现多设备协同,让用户在手机、平板、智能手表等设备上无缝使用旅游应用。同时,依托华为强大的AI技术和自研的“盘古”大模型,为旅游应用提供了强大的智能支持。个性化推荐实现方式用户数据收集与分
- shell脚本练习
肥咩咩的大兔子
linux服务器运维
1、shell脚本写出检测/tmp/size.log文件如果存在显示它的内容,不存在则创建一个文件将创建时间写入。 if[-f/tmp/size.log];then cat/tmp/size.log else statexist.sh|awk-F:"NR==5">/tmp/size.log fi 2、写一个shel1脚本,实现批量添加20个用户,用户名为user01-20,密码为user后面跟5
- 《CPython Internals》阅读笔记:p1-p19
python
《CPythonInternals》学习第1天,p1-p19总结,总计19页。一、技术总结无。二、英语总结(生词:2)1.humblevshumbled(1)humble:humus(“earth”)adj.字面意思是“ontheground”,后面引申为“lowlyinkind,state,condition(卑微)”,"notproudthatyouareimportant(谦卑)"。(2)h
- 《解锁数据新动能:数据标注工具与AI模型训练平台的无缝对接热潮》
人工智能深度学习
在当今人工智能飞速发展的时代,数据已然成为驱动其进步的核心燃料。而数据标注工具与人工智能模型训练平台的集成,实现数据的无缝流转,正逐渐成为行业内的关键热点,犹如为人工智能的发展装上了强劲的双引擎。为何集成如此关键数据标注是为数据赋予标签,使其能被人工智能模型理解和学习的过程。训练平台则是利用这些标注好的数据来构建和优化模型。两者若相互独立运作,数据在不同系统间的传输会面临格式不兼容、接口不匹配等难
- “越用越上瘾”,中华财险 60% 研发人员用通义灵码提效
云原生
保险业被看成是社会“稳定器”和经济“助推器”,近年来已驶入数字化发展快车道。在AI、大模型当道的今天,保险行业的研发流程、产品设计、场景拓展等业务链条各环节,都值得用大模型进行重塑。日前,中华联合财产保险股份有限公司(以下简称“中华财险”)创新研发中心副总经理汤密力在阿里云“云故事探索”栏目中,介绍了“云+大模型”如何为这家老牌金融机构的业务创新注入新动力。据汤密力介绍,通过使用通义灵码,中华财险
- 第81期 | GPTSecurity周报
aigc网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.大语言模型与代码安
- 《数据质量:人工智能模型的成败关键》
人工智能深度学习
在当今人工智能飞速发展的时代,数据质量对人工智能模型的影响至关重要,它直接关系到模型的性能、准确性和可靠性。以下是对这一问题的详细探讨。影响模型的准确性数据准确性的作用:准确的数据是模型准确输出的基础。如果数据中存在错误、偏差或噪声,模型就会学习到这些错误信息,从而导致预测结果不准确。例如在医疗诊断模型中,若患者的症状数据记录错误,模型可能会给出错误的诊断建议。数据完整性的影响:不完整的数据会使模
- 云起无垠荣获第八届“强网杯”高阶技术专项赛优秀奖
网络安全
近日,第八届“强网杯”全国网络安全挑战赛线下赛于郑州高新区的网络安全科技馆赛博厅圆满落幕。云起无垠创始人兼CEO沈凯文博士在活动中发表了题为《安全智能体技术实践与内生安全问题思考》的精彩演讲。沈凯文博士指出,当前数字化时代下网络安全领域面临深刻变革与挑战,AI的快速发展使其成为网络安全创新的核心动力,促使安全智能体出现。但大模型在安全场景落地时存在诸多难题,为此云起无垠构建了AI安全智能体平台。该
- 议题征集 | 2024 广州站 Meetup 即将开启!
云计算
2024年,KubeSphere社区已陆续在北京、上海、深圳、杭州、成都等五座城市成功举办线下Meetup。今年的收官之站,我们将相约广州!广州的小伙伴们,KubeSphere社区盛会即将到来,千万别错过!目前活动议题征集通道已经开启,欢迎各位技术大咖及云原生爱好者踊跃投稿,共同分享技术洞见和实践经验!活动信息时间:2024年12月28日(周六)地点:广东省广州市海珠区鼎新路88号广州阿里中心(风
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比