不知道CV方向的同学在读论文的时候有没有发现这样一个问题:论文的核心思想很简单,但当你找这篇论文的核心代码时发现,作者提供的源码模块会嵌入到分类、检测、分割等任务框架中,这时候如果你对某一特定框架不熟悉,尽管核心代码只有十几行,依然会发现很难找出。
今天我就帮大家解决一部分这个问题,还记得上次分享的attention论文合集吗?没印象的同学点这里。
这次总结了这30篇attention论文中的核心代码分享,还有一部分其他系列的论文,比如ReP、卷积级数等,核心代码与原文都整理了。
由于篇幅和时间原因,暂时只分享了一部分,需要全部论文以及完整核心代码的同学看文末
from model.attention.Axial_attention import AxialImageTransformer
import torch
if __name__ == '__main__':
input=torch.randn(3, 128, 7, 7)
model = AxialImageTransformer(
dim = 128,
depth = 12,
reversible = True
)
outputs = model(input)
print(outputs.shape)
from model.attention.CrissCrossAttention import CrissCrossAttention
import torch
if __name__ == '__main__':
input=torch.randn(3, 64, 7, 7)
model = CrissCrossAttention(64)
outputs = model(input)
print(outputs.shape)
from model.attention.MOATransformer import MOATransformer
import torch
if __name__ == '__main__':
input=torch.randn(1,3,224,224)
model = MOATransformer(
img_size=224,
patch_size=4,
in_chans=3,
num_classes=1000,
embed_dim=96,
depths=[2, 2, 6],
num_heads=[3, 6, 12],
window_size=14,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
drop_path_rate=0.1,
ape=False,
patch_norm=True,
use_checkpoint=False
)
output=model(input)
print(output.shape)
from model.attention.Crossformer import CrossFormer
import torch
if __name__ == '__main__':
input=torch.randn(1,3,224,224)
model = CrossFormer(img_size=224,
patch_size=[4, 8, 16, 32],
in_chans= 3,
num_classes=1000,
embed_dim=48,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
group_size=[7, 7, 7, 7],
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
drop_path_rate=0.1,
ape=False,
patch_norm=True,
use_checkpoint=False,
merge_size=[[2, 4], [2,4], [2, 4]]
)
output=model(input)
print(output.shape)
from model.attention.DAT import DAT
import torch
if __name__ == '__main__':
input=torch.randn(1,3,224,224)
model = DAT(
img_size=224,
patch_size=4,
num_classes=1000,
expansion=4,
dim_stem=96,
dims=[96, 192, 384, 768],
depths=[2, 2, 6, 2],
stage_spec=[['L', 'S'], ['L', 'S'], ['L', 'D', 'L', 'D', 'L', 'D'], ['L', 'D']],
heads=[3, 6, 12, 24],
window_sizes=[7, 7, 7, 7] ,
groups=[-1, -1, 3, 6],
use_pes=[False, False, True, True],
dwc_pes=[False, False, False, False],
strides=[-1, -1, 1, 1],
sr_ratios=[-1, -1, -1, -1],
offset_range_factor=[-1, -1, 2, 2],
no_offs=[False, False, False, False],
fixed_pes=[False, False, False, False],
use_dwc_mlps=[False, False, False, False],
use_conv_patches=False,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.2,
)
output=model(input)
print(output[0].shape)
from model.attention.MobileViTv2Attention import MobileViTv2Attention
import torch
from torch import nn
from torch.nn import functional as F
if __name__ == '__main__':
input=torch.randn(50,49,512)
sa = MobileViTv2Attention(d_model=512)
output=sa(input)
print(output.shape)
from model.attention.ACmix import ACmix
import torch
if __name__ == '__main__':
input=torch.randn(50,256,7,7)
acmix = ACmix(in_planes=256, out_planes=256)
output=acmix(input)
print(output.shape)
from model.attention.ParNetAttention import *
import torch
from torch import nn
from torch.nn import functional as F
if __name__ == '__main__':
input=torch.randn(50,512,7,7)
pna = ParNetAttention(channel=512)
output=pna(input)
print(output.shape) #50,512,7,7
from model.attention.UFOAttention import *
import torch
from torch import nn
from torch.nn import functional as F
if __name__ == '__main__':
input=torch.randn(50,49,512)
ufo = UFOAttention(d_model=512, d_k=512, d_v=512, h=8)
output=ufo(input,input,input)
print(output.shape) #[50, 49, 512]
from model.attention.CoordAttention import CoordAtt
import torch
from torch import nn
from torch.nn import functional as F
inp=torch.rand([2, 96, 56, 56])
inp_dim, oup_dim = 96, 96
reduction=32
coord_attention = CoordAtt(inp_dim, oup_dim, reduction=reduction)
output=coord_attention(inp)
print(output.shape)
from model.rep.repvgg import RepBlock
import torch
input=torch.randn(50,512,49,49)
repblock=RepBlock(512,512)
repblock.eval()
out=repblock(input)
repblock._switch_to_deploy()
out2=repblock(input)
print('difference between vgg and repvgg')
print(((out2-out)**2).sum())
from model.rep.acnet import ACNet
import torch
from torch import nn
input=torch.randn(50,512,49,49)
acnet=ACNet(512,512)
acnet.eval()
out=acnet(input)
acnet._switch_to_deploy()
out2=acnet(input)
print('difference:')
print(((out2-out)**2).sum())
from model.conv.CondConv import *
import torch
from torch import nn
from torch.nn import functional as F
if __name__ == '__main__':
input=torch.randn(2,32,64,64)
m=CondConv(in_planes=32,out_planes=64,kernel_size=3,stride=1,padding=1,bias=False)
out=m(input)
print(out.shape)
from model.conv.DynamicConv import *
import torch
from torch import nn
from torch.nn import functional as F
if __name__ == '__main__':
input=torch.randn(2,32,64,64)
m=DynamicConv(in_planes=32,out_planes=64,kernel_size=3,stride=1,padding=1,bias=False)
out=m(input)
print(out.shape) # 2,32,64,64
from model.conv.Involution import Involution
import torch
from torch import nn
from torch.nn import functional as F
input=torch.randn(1,4,64,64)
involution=Involution(kernel_size=3,in_channel=4,stride=2)
out=involution(input)
print(out.shape)
关注下方《学姐带你玩AI》
回复“核心代码”获取全部论文+代码合集
码字不易,欢迎大家点赞评论收藏!