项目地址
先看src/demo.py:
def demo(opt):
result_root = opt.output_root if opt.output_root != '' else '.'
mkdir_if_missing(result_root)
logger.info('Starting tracking...')
dataloader = datasets.LoadVideo(opt.input_video, opt.img_size)
result_filename = os.path.join(result_root, 'results.txt')
frame_rate = dataloader.frame_rate
frame_dir = None if opt.output_format == 'text' else osp.join(result_root, 'frame')
eval_seq(opt, dataloader, 'mot', result_filename, save_dir=frame_dir, show_image=False, frame_rate=frame_rate)
if opt.output_format == 'video':
output_video_path = osp.join(result_root, 'result.mp4')
cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg -b 5000k -c:v mpeg4 {}'.format(osp.join(result_root, 'frame'), output_video_path)
os.system(cmd_str)
前面定义了一些读取视频相关的参数、路径等。进入11行eval_seq函数:
def eval_seq(opt, dataloader, data_type, result_filename, save_dir=None, show_image=True, frame_rate=30):
if save_dir:
mkdir_if_missing(save_dir)
tracker = JDETracker(opt, frame_rate=frame_rate)
timer = Timer()
results = []
frame_id = 0
for path, img, img0 in dataloader:
if frame_id % 20 == 0:
logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time)))
# run tracking
timer.tic()
blob = torch.from_numpy(img).cuda().unsqueeze(0)
online_targets = tracker.update(blob, img0)
online_tlwhs = []
online_ids = []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
vertical = tlwh[2] / tlwh[3] > 1.6
if tlwh[2] * tlwh[3] > opt.min_box_area and not vertical:
online_tlwhs.append(tlwh)
online_ids.append(tid)
timer.toc()
# save results
results.append((frame_id + 1, online_tlwhs, online_ids))
if show_image or save_dir is not None:
online_im = vis.plot_tracking(img0, online_tlwhs, online_ids, frame_id=frame_id,
fps=1. / timer.average_time)
if show_image:
cv2.imshow('online_im', online_im)
if save_dir is not None:
cv2.imwrite(os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), online_im)
frame_id += 1
# save results
write_results(result_filename, results, data_type)
return frame_id, timer.average_time, timer.calls
JDETracker:
class JDETracker(object):
def __init__(self, opt, frame_rate=30):
self.opt = opt
if opt.gpus[0] >= 0:
opt.device = torch.device('cuda')
else:
opt.device = torch.device('cpu')
print('Creating model...')
self.model = create_model(opt.arch, opt.heads, opt.head_conv)# 模型结果看论文
self.model = load_model(self.model, opt.load_model)
self.model = self.model.to(opt.device)
self.model.eval()
self.tracked_stracks = [] # type: list[STrack]
self.lost_stracks = [] # type: list[STrack]
self.removed_stracks = [] # type: list[STrack]
self.frame_id = 0
self.det_thresh = opt.conf_thres
self.buffer_size = int(frame_rate / 30.0 * opt.track_buffer)
self.max_time_lost = self.buffer_size
self.max_per_image = opt.K
self.mean = np.array(opt.mean, dtype=np.float32).reshape(1, 1, 3)
self.std = np.array(opt.std, dtype=np.float32).reshape(1, 1, 3)
self.kalman_filter = KalmanFilter()
第十行create_model( ):模型为DLA34
def create_model(arch, heads, head_conv):
num_layers = int(arch[arch.find('_') + 1:]) if '_' in arch else 0
arch = arch[:arch.find('_')] if '_' in arch else arch
get_model = _model_factory[arch]
model = get_model(num_layers=num_layers, heads=heads, head_conv=head_conv)
return model
def get_pose_net(num_layers, heads, head_conv=256, down_ratio=4):
# heads:{'hm': 1, 'id': 512, 'reg': 2, 'wh': 2}
model = DLASeg('dla{}'.format(num_layers), heads,
pretrained=True,
down_ratio=down_ratio,
final_kernel=1,
last_level=5,
head_conv=head_conv)
return model
class DLASeg(nn.Module):
def __init__(self, base_name, heads, pretrained, down_ratio, final_kernel,
last_level, head_conv, out_channel=0):
super(DLASeg, self).__init__()
assert down_ratio in [2, 4, 8, 16] # down_ratio:4
self.first_level = int(np.log2(down_ratio)) # 2
self.last_level = last_level # last_level:5
self.base = globals()[base_name](pretrained=pretrained) # pretrained:True
channels = self.base.channels
scales = [2 ** i for i in range(len(channels[self.first_level:]))]
self.dla_up = DLAUp(self.first_level, channels[self.first_level:], scales)
if out_channel == 0:
out_channel = channels[self.first_level]
self.ida_up = IDAUp(out_channel, channels[self.first_level:self.last_level],
[2 ** i for i in range(self.last_level - self.first_level)])
self.heads = heads
for head in self.heads:
classes = self.heads[head]
if head_conv > 0:
fc = nn.Sequential(
nn.Conv2d(channels[self.first_level], head_conv,
kernel_size=3, padding=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(head_conv, classes,
kernel_size=final_kernel, stride=1,
padding=final_kernel // 2, bias=True))
if 'hm' in head:
fc[-1].bias.data.fill_(-2.19)
else:
fill_fc_weights(fc)
else:
fc = nn.Conv2d(channels[self.first_level], classes,
kernel_size=final_kernel, stride=1,
padding=final_kernel // 2, bias=True)
if 'hm' in head:
fc.bias.data.fill_(-2.19)
else:
fill_fc_weights(fc)
self.__setattr__(head, fc)
第25行:self.base = globals()base_name:
def dla34(pretrained=True, **kwargs): # DLA-34
model = DLA([1, 1, 1, 2, 2, 1],
[16, 32, 64, 128, 256, 512],
block=BasicBlock, **kwargs)
if pretrained:
model.load_pretrained_model(data='imagenet', name='dla34', hash='ba72cf86')
return model
class DLA(nn.Module):
def __init__(self, levels, channels, num_classes=1000,
block=BasicBlock, residual_root=False, linear_root=False):
super(DLA, self).__init__()
self.channels = channels
self.num_classes = num_classes
self.base_layer = nn.Sequential(
nn.Conv2d(3, channels[0], kernel_size=7, stride=1,
padding=3, bias=False),
nn.BatchNorm2d(channels[0], momentum=BN_MOMENTUM),
nn.ReLU(inplace=True))
self.level0 = self._make_conv_level(
channels[0], channels[0], levels[0])
self.level1 = self._make_conv_level(
channels[0], channels[1], levels[1], stride=2)
self.level2 = Tree(levels[2], block, channels[1], channels[2], 2,
level_root=False,
root_residual=residual_root)
self.level3 = Tree(levels[3], block, channels[2], channels[3], 2,
level_root=True, root_residual=residual_root)
self.level4 = Tree(levels[4], block, channels[3], channels[4], 2,
level_root=True, root_residual=residual_root)
self.level5 = Tree(levels[5], block, channels[4], channels[5], 2,
level_root=True, root_residual=residual_root)
# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
# elif isinstance(m, nn.BatchNorm2d):
# m.weight.data.fill_(1)
# m.bias.data.zero_()
def _make_level(self, block, inplanes, planes, blocks, stride=1):
downsample = None
if stride != 1 or inplanes != planes:
downsample = nn.Sequential(
nn.MaxPool2d(stride, stride=stride),
nn.Conv2d(inplanes, planes,
kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(planes, momentum=BN_MOMENTUM),
)
layers = []
layers.append(block(inplanes, planes, stride, downsample=downsample))
for i in range(1, blocks):
layers.append(block(inplanes, planes))
return nn.Sequential(*layers)
def _make_conv_level(self, inplanes, planes, convs, stride=1, dilation=1):
modules = []
for i in range(convs):
modules.extend([
nn.Conv2d(inplanes, planes, kernel_size=3,
stride=stride if i == 0 else 1,
padding=dilation, bias=False, dilation=dilation),
nn.BatchNorm2d(planes, momentum=BN_MOMENTUM),
nn.ReLU(inplace=True)])
inplanes = planes
return nn.Sequential(*modules)
class Tree(nn.Module):
def __init__(self, levels, block, in_channels, out_channels, stride=1,
level_root=False, root_dim=0, root_kernel_size=1,
dilation=1, root_residual=False):
super(Tree, self).__init__()
if root_dim == 0:
root_dim = 2 * out_channels
if level_root:
root_dim += in_channels
if levels == 1:
self.tree1 = block(in_channels, out_channels, stride,
dilation=dilation)
self.tree2 = block(out_channels, out_channels, 1,
dilation=dilation)
else:
self.tree1 = Tree(levels - 1, block, in_channels, out_channels,
stride, root_dim=0,
root_kernel_size=root_kernel_size,
dilation=dilation, root_residual=root_residual)
self.tree2 = Tree(levels - 1, block, out_channels, out_channels,
root_dim=root_dim + out_channels,
root_kernel_size=root_kernel_size,
dilation=dilation, root_residual=root_residual)
if levels == 1:
self.root = Root(root_dim, out_channels, root_kernel_size,
root_residual)
self.level_root = level_root
self.root_dim = root_dim
self.downsample = None
self.project = None
self.levels = levels
if stride > 1:
self.downsample = nn.MaxPool2d(stride, stride=stride)
if in_channels != out_channels:
self.project = nn.Sequential(
nn.Conv2d(in_channels, out_channels,
kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(out_channels, momentum=BN_MOMENTUM)
)
以递归的方式实现DLA34 模型。
回溯到DLASeg:
class DLASeg(nn.Module):
def __init__(self, base_name, heads, pretrained, down_ratio, final_kernel,
last_level, head_conv, out_channel=0):
super(DLASeg, self).__init__()
assert down_ratio in [2, 4, 8, 16] # down_ratio:4
self.first_level = int(np.log2(down_ratio))
self.last_level = last_level # last_level:5
self.base = globals()[base_name](pretrained=pretrained) # pretrained:True
channels = self.base.channels # [16, 32, 64, 128, 256, 512]
scales = [2 ** i for i in range(len(channels[self.first_level:]))] # [16, 32, 64, 128, 256, 512]
self.dla_up = DLAUp(self.first_level, channels[self.first_level:], scales)
if out_channel == 0:
out_channel = channels[self.first_level]
self.ida_up = IDAUp(out_channel, channels[self.first_level:self.last_level],
[2 ** i for i in range(self.last_level - self.first_level)])
self.heads = heads
for head in self.heads:
classes = self.heads[head]
if head_conv > 0:
fc = nn.Sequential(
nn.Conv2d(channels[self.first_level], head_conv,
kernel_size=3, padding=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(head_conv, classes,
kernel_size=final_kernel, stride=1,
padding=final_kernel // 2, bias=True))
if 'hm' in head:
fc[-1].bias.data.fill_(-2.19)
else:
fill_fc_weights(fc)
else:
fc = nn.Conv2d(channels[self.first_level], classes,
kernel_size=final_kernel, stride=1,
padding=final_kernel // 2, bias=True)
if 'hm' in head:
fc.bias.data.fill_(-2.19)
else:
fill_fc_weights(fc)
self.__setattr__(head, fc)
DLAUp:
class DLAUp(nn.Module):
def __init__(self, startp, channels, scales, in_channels=None):#start:2
#channels:[64, 128, 256, 512] scales:[1, 2, 4, 8] in_channels=None
super(DLAUp, self).__init__()
self.startp = startp
if in_channels is None:
in_channels = channels
self.channels = channels
channels = list(channels)
scales = np.array(scales, dtype=int)
for i in range(len(channels) - 1):
j = -i - 2
setattr(self, 'ida_{}'.format(i),
IDAUp(channels[j], in_channels[j:],
scales[j:] // scales[j]))
scales[j + 1:] = scales[j]
in_channels[j + 1:] = [channels[j] for _ in channels[j + 1:]]
def forward(self, layers):
out = [layers[-1]] # start with 32
for i in range(len(layers) - self.startp - 1):
ida = getattr(self, 'ida_{}'.format(i))
ida(layers, len(layers) -i - 2, len(layers))
out.insert(0, layers[-1])
return out
class IDAUp(nn.Module):
def __init__(self, o, channels, up_f):#o:256 channels:[256, 512] up_f:array([1, 2])
super(IDAUp, self).__init__()
for i in range(1, len(channels)):
c = channels[i]
f = int(up_f[i])
proj = DeformConv(c, o)
node = DeformConv(o, o)
up = nn.ConvTranspose2d(o, o, f * 2, stride=f,
padding=f // 2, output_padding=0,
groups=o, bias=False)
fill_up_weights(up)
setattr(self, 'proj_' + str(i), proj)
setattr(self, 'up_' + str(i), up)
setattr(self, 'node_' + str(i), node)
def forward(self, layers, startp, endp):
for i in range(startp + 1, endp):
upsample = getattr(self, 'up_' + str(i - startp))
project = getattr(self, 'proj_' + str(i - startp))
layers[i] = upsample(project(layers[i]))
node = getattr(self, 'node_' + str(i - startp))
layers[i] = node(layers[i] + layers[i - 1])
class DeformConv(nn.Module):
def __init__(self, chi, cho):
super(DeformConv, self).__init__()
self.actf = nn.Sequential(
nn.BatchNorm2d(cho, momentum=BN_MOMENTUM),
nn.ReLU(inplace=True)
)
self.conv = DCN(chi, cho, kernel_size=(3,3), stride=1, padding=1, dilation=1, deformable_groups=1)
def forward(self, x):
x = self.conv(x)
x = self.actf(x)
return x
class DCN(DCNv2): # Deformable ConvNets v2
def __init__(self, in_channels, out_channels,
kernel_size, stride, padding,
dilation=1, deformable_groups=1):
super(DCN, self).__init__(in_channels, out_channels,
kernel_size, stride, padding, dilation, deformable_groups)
channels_ = self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1]
self.conv_offset_mask = nn.Conv2d(self.in_channels,
channels_,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
bias=True)
self.init_offset()
def init_offset(self):
self.conv_offset_mask.weight.data.zero_()
self.conv_offset_mask.bias.data.zero_()
def forward(self, input):
out = self.conv_offset_mask(input)# Deformable ConvNets v2
o1, o2, mask = torch.chunk(out, 3, dim=1)
offset = torch.cat((o1, o2), dim=1)
mask = torch.sigmoid(mask)
return dcn_v2_conv(input, offset, mask,
self.weight, self.bias,
self.stride,
self.padding,
self.dilation,
self.deformable_groups)
高层特征上采样,与低层特征进行融合,为了提高网络的表达能力,用了Deformable ConvNets v2
FairMot的模型融入了很多方法(anchor free目标检测算法centernet,DLA34,特征上采样融合,可变形卷积V2),有很多值得学习的地方,虽然实现起来看似非常繁琐。
Loss部分:多目标跟踪 | FairMOT:统一检测、重识别的多目标跟踪框架,全新Baseline
跟踪用的是deepsort的流程。