go get github.com/go-redis/redis/v8
普通连接模式
go-redis 库中使用 redis.NewClient 函数连接 Redis 服务器。
redis连接池
func myPool(addr, password string)*redis.Pool {
return &redis.Pool{
MaxIdle:64, MaxActive: 1000,
IdleTimeout:240*time.Second,
Dial:func()(redis.Conn, error) {
conn, err:=redis.Dia1(network:"tcp",addr) if err!= nil {
return nil, err
}
//若有密码,判断
if_err :=conn.Do(commandName:"AUTH",password);err!=nil {
conn. Close()
return nil, err
}
return conn err
},
//连接测试,开发时写// 上线注释掉 I
TestOnBorrow: func(conn redis.Conn, t time.Time) error{
_,err :=conn.Do(commandName:"PING”) return err
},
}
}
var rdb *redis.Client
func main(){
//全局的
rdb = redis.NewClient(&redis.Options{
Addr: "localhost:6379",
Password: "", // 密码
DB: 0, // 数据库,从0开始
PoolSize: 30, // 连接池大小
})
}
除此之外,还可以使用 redis.ParseURL 函数从表示数据源的字符串中解析得到 Redis 服务器的配置信息。
opt, err := redis.ParseURL("redis://:@localhost:6379/" )
if err != nil {
panic(err)
}
rdb := redis.NewClient(opt)
TLS连接模式
如果使用的是 TLS 连接方式,则需要使用 tls.Config 配置。
rdb := redis.NewClient(&redis.Options{
TLSConfig: &tls.Config{
MinVersion: tls.VersionTLS12,
// Certificates: []tls.Certificate{cert},
// ServerName: "your.domain.com",
},
})
Redis Sentinel模式
使用下面的命令连接到由 Redis Sentinel 管理的 Redis 服务器。
rdb := redis.NewFailoverClient(&redis.FailoverOptions{
MasterName: "master-name",
SentinelAddrs: []string{":9126", ":9127", ":9128"},
})
Redis Cluster模式
使用下面的命令连接到 Redis Cluster,go-redis 支持按延迟或随机路由命令。
rdb := redis.NewClusterClient(&redis.ClusterOptions{
Addrs: []string{":7000", ":7001", ":7002", ":7003", ":7004", ":7005"},
// 若要根据延迟或随机路由命令,请启用以下命令之一
// RouteByLatency: true,
// RouteRandomly: true,
})
go-redis 库提供了一个 redis.Nil 错误来表示 Key 不存在的错误。因此在使用 go-redis 时需要注意对返回错误的判断。在某些场景下我们应该区别处理 redis.Nil 和其他不为 nil 的错误。
// getValueFromRedis redis.Nil判断
func getValueFromRedis(key, defaultValue string) (string, error) {
ctx, cancel := context.WithTimeout(context.Background(), 500*time.Millisecond)
defer cancel()
val, err := rdb.Get(ctx, key).Result()
if err != nil {
// 如果返回的错误是key不存在
if errors.Is(err, redis.Nil) {
return defaultValue, nil
}
// 出其他错了
return "", err
}
return val, nil
}
// zsetDemo 操作zset示例
func zsetDemo() {
// key
zsetKey := "language_rank"
// value
languages := []*redis.Z{
{Score: 90.0, Member: "Golang"},
{Score: 98.0, Member: "Java"},
{Score: 95.0, Member: "Python"},
{Score: 97.0, Member: "JavaScript"},
{Score: 99.0, Member: "C/C++"},
}
ctx, cancel := context.WithTimeout(context.Background(), 500*time.Millisecond)
defer cancel()
// ZADD
err := rdb.ZAdd(ctx, zsetKey, languages...).Err()
if err != nil {
fmt.Printf("zadd failed, err:%v\n", err)
return
}
fmt.Println("zadd success")
// 把Golang的分数加10
newScore, err := rdb.ZIncrBy(ctx, zsetKey, 10.0, "Golang").Result()
if err != nil {
fmt.Printf("zincrby failed, err:%v\n", err)
return
}
fmt.Printf("Golang's score is %f now.\n", newScore)
// 取分数最高的3个
ret := rdb.ZRevRangeWithScores(ctx, zsetKey, 0, 2).Val()
for _, z := range ret {
fmt.Println(z.Member, z.Score)
}
// 取95~100分的
op := &redis.ZRangeBy{
Min: "95",
Max: "100",
}
ret, err = rdb.ZRangeByScoreWithScores(ctx, zsetKey, op).Result()
if err != nil {
fmt.Printf("zrangebyscore failed, err:%v\n", err)
return
}
for _, z := range ret {
fmt.Println(z.Member, z.Score)
}
}
你可以使用KEYS prefix:* 命令按前缀获取所有 key。
vals, err := rdb.Keys(ctx, "prefix*").Result()
但是如果需要扫描数百万的 key ,那速度就会比较慢。这种场景下你可以使用Scan 命令来遍历所有符合要求的 key。
// scanKeysDemo2 按前缀扫描key示例
func scanKeysDemo2() {
ctx, cancel := context.WithTimeout(context.Background(), 500*time.Millisecond)
defer cancel()
// 按前缀扫描key
iter := rdb.Scan(ctx, 0, "prefix:*", 0).Iterator()
for iter.Next(ctx) {
fmt.Println("keys", iter.Val())
}
if err := iter.Err(); err != nil {
panic(err)
}
}
// delKeysByMatch 按match格式扫描所有key并删除
func delKeysByMatch(match string, timeout time.Duration) {
ctx, cancel := context.WithTimeout(context.Background(), timeout)
defer cancel()
iter := rdb.Scan(ctx, 0, match, 0).Iterator()
for iter.Next(ctx) {
err := rdb.Del(ctx, iter.Val()).Err()
if err != nil {
panic(err)
}
}
if err := iter.Err(); err != nil {
panic(err)
}
}
Redis Pipeline 允许通过使用单个 client-server-client 往返执行多个命令来提高性能。区别于一个接一个地执行100个命令,你可以将这些命令放入 pipeline 中,然后使用1次读写操作像执行单个命令一样执行它们。这样做的好处是节省了执行命令的网络往返时间(RTT)。
在下面的示例代码中演示了使用 pipeline 通过一个 write + read 操作来执行多个命令。
pipe := rdb.Pipeline()
incr := pipe.Incr(ctx, "pipeline_counter")
pipe.Expire(ctx, "pipeline_counter", time.Hour)
cmds, err := pipe.Exec(ctx)
if err != nil {
panic(err)
}
// 在执行pipe.Exec之后才能获取到结果
fmt.Println(incr.Val())
上面的代码相当于将以下两个命令一次发给 Redis Server 端执行,与不使用 Pipeline 相比能减少一次RTT。
INCR pipeline_counter
EXPIRE pipeline_counts 3600
或者,你也可以使用Pipelined 方法,它会在函数退出时调用 Exec。
var incr *redis.IntCmd
cmds, err := rdb.Pipelined(ctx, func(pipe redis.Pipeliner) error {
incr = pipe.Incr(ctx, "pipelined_counter")
pipe.Expire(ctx, "pipelined_counter", time.Hour)
return nil
})
if err != nil {
panic(err)
}
// 在pipeline执行后获取到结果
fmt.Println(incr.Val())
我们可以遍历 pipeline 命令的返回值依次获取每个命令的结果。下方的示例代码中使用pipiline一次执行了100个 Get 命令,在pipeline 执行后遍历取出100个命令的执行结果。
cmds, err := rdb.Pipelined(ctx, func(pipe redis.Pipeliner) error {
for i := 0; i < 100; i++ {
pipe.Get(ctx, fmt.Sprintf("key%d", i))
}
return nil
})
if err != nil {
panic(err)
}
for _, cmd := range cmds {
fmt.Println(cmd.(*redis.StringCmd).Val())
}
在那些我们需要一次性执行多个命令的场景下,就可以考虑使用 pipeline 来优化。
Redis 是单线程执行命令的,因此单个命令始终是原子的,但是来自不同客户端的两个给定命令可以依次执行,例如在它们之间交替执行。但是,Multi/exec能够确保在multi/exec两个语句之间的命令之间没有其他客户端正在执行命令。
在这种场景我们需要使用 TxPipeline 或 TxPipelined 方法将 pipeline 命令使用 MULTI 和EXEC包裹起来。
// TxPipeline demo
pipe := rdb.TxPipeline()
incr := pipe.Incr(ctx, "tx_pipeline_counter")
pipe.Expire(ctx, "tx_pipeline_counter", time.Hour)
_, err := pipe.Exec(ctx)
fmt.Println(incr.Val(), err)
// TxPipelined demo
var incr2 *redis.IntCmd
_, err = rdb.TxPipelined(ctx, func(pipe redis.Pipeliner) error {
incr2 = pipe.Incr(ctx, "tx_pipeline_counter")
pipe.Expire(ctx, "tx_pipeline_counter", time.Hour)
return nil
})
fmt.Println(incr2.Val(), err)
上面代码相当于在一个RTT下执行了下面的redis命令:
MULTI
INCR pipeline_counter
EXPIRE pipeline_counts 3600
EXEC
我们通常搭配 WATCH命令来执行事务操作。从使用WATCH命令监视某个 key 开始,直到执行EXEC命令的这段时间里,如果有其他用户抢先对被监视的 key 进行了替换、更新、删除等操作,那么当用户尝试执行EXEC的时候,事务将失败并返回一个错误,用户可以根据这个错误选择重试事务或者放弃事务。
Watch方法接收一个函数和一个或多个key作为参数。
Watch(fn func(*Tx) error, keys ...string) error
下面的代码片段演示了 Watch 方法搭配 TxPipelined 的使用示例。
// watchDemo 在key值不变的情况下将其值+1
func watchDemo(ctx context.Context, key string) error {
return rdb.Watch(ctx, func(tx *redis.Tx) error {
n, err := tx.Get(ctx, key).Int()
if err != nil && err != redis.Nil {
return err
}
// 假设操作耗时5秒
// 5秒内我们通过其他的客户端修改key,当前事务就会失败
time.Sleep(5 * time.Second)
_, err = tx.TxPipelined(ctx, func(pipe redis.Pipeliner) error {
pipe.Set(ctx, key, n+1, time.Hour)
return nil
})
return err
}, key)
}
将上面的函数执行并打印其返回值,如果我们在程序运行后的5秒内修改了被 watch 的 key 的值,那么该事务操作失败,返回redis: transaction failed错误。
最后我们来看一个 go-redis 官方文档中使用 GET 、SET和WATCH命令实现一个 INCR 命令的完整示例。
const routineCount = 100
increment := func(key string) error {
txf := func(tx *redis.Tx) error {
// 获得当前值或零值
n, err := tx.Get(key).Int()
if err != nil && err != redis.Nil {
return err
}
// 实际操作(乐观锁定中的本地操作)
n++
// 仅在监视的Key保持不变的情况下运行
_, err = tx.Pipelined(func(pipe redis.Pipeliner) error {
// pipe 处理错误情况
pipe.Set(key, n, 0)
return nil
})
return err
}
for retries := routineCount; retries > 0; retries-- {
err := rdb.Watch(txf, key)
if err != redis.TxFailedErr {
return err
}
// 乐观锁丢失
}
return errors.New("increment reached maximum number of retries")
}
var wg sync.WaitGroup
wg.Add(routineCount)
for i := 0; i < routineCount; i++ {
go func() {
defer wg.Done()
if err := increment("counter3"); err != nil {
fmt.Println("increment error:", err)
}
}()
}
wg.Wait()
n, err := rdb.Get("counter3").Int()
fmt.Println("ended with", n, err)
在这个示例中使用了 redis.TxFailedErr 来检查事务是否失败。