LeetCode 热题 HOT 100 - 543. 二叉树的直径

LeetCode 热题 HOT 100 - 543. 二叉树的直径_第1张图片

思路:深度优先搜索(利用递归函数做遍历)

首先我们知道一条路径的长度为该路径经过的节点数减一,所以求直径(即求路径长度的最大值)等效于求路径经过节点数的最大值减一。

而任意一条路径均可以被看作由某个节点为起点,从其左儿子和右儿子向下遍历的路径拼接得到。

LeetCode 热题 HOT 100 - 543. 二叉树的直径_第2张图片

——时间复杂度:O(N),其中 N 为二叉树的节点数,即遍历一棵二叉树的时间复杂度,每个结点只被访问一次。

——空间复杂度:O(Height),其中 Height 为二叉树的高度。由于递归函数在递归过程中需要为每一层递归函数分配栈空间,所以这里需要额外的空间且该空间取决于递归的深度,而递归的深度显然为二叉树的高度,并且每次递归调用的函数里又只用了常数个变量,所以所需空间复杂度为 O(Height) 。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    int ans; //节点node为起点的路径经过节点数的最大值 
    public int diameterOfBinaryTree(TreeNode root) {
        ans = 1;
        depth(root);
        return ans - 1; //二叉树的直径就是所有节点的最大值减一
    }
    public int depth(TreeNode node) {
        if (node == null) {
            return 0; // 访问到空节点了,返回0
        }
        int L = depth(node.left); // 左儿子为根的子树的深度
        int R = depth(node.right); // 右儿子为根的子树的深度
        ans = Math.max(ans, L+R+1); // 计算d_node即L+R+1 并更新ans
        return Math.max(L, R) + 1; // 返回该节点为根的子树的深度
    }
}

 

你可能感兴趣的:(算法,leetcode)