Description
用函数实现归并排序(非递归算法),并输出每趟排序的结果
输入格式
第一行:键盘输入待排序关键的个数n
第二行:输入n个待排序关键字,用空格分隔数据
输出格式
每行输出每趟排序的结果,数据之间用一个空格分隔
输入样例
10
5 4 8 0 9 3 2 6 7 1
输出样例
4 5 0 8 3 9 2 6 1 7
0 4 5 8 2 3 6 9 1 7
0 2 3 4 5 6 8 9 1 7
0 1 2 3 4 5 6 7 8 9
//递归分治法,无法输出单次排序的的结果
#include
int n;
void Merge(int* S, int* T, int low, int high);//合并左右区间
void MergeSort(int* S, int* T, int low, int high)
{
if (low == high)
{
T[low] = S[low];
return;
}
int mid = low + (high - low) / 2;//一分为二
MergeSort(S, T, low, mid);//左边排序
MergeSort(S, T, mid + 1, high);//右边排序
Merge(S, T, low, high);//合并区间,将原左右区间按照排序合并到目标数组T中
int i;
//更新原数组,让原数组有序,如果不更新,那么递归的时候单个区间的排序结果只在目标数组T中,之后又对未更新的原数组进行处理,即没有排序
for (i = low; i <= high; i++)
S[i] = T[i];
return;
}
void Merge(int* S, int* T, int low, int high)//合并左右区间
{
int i, j, k, mid = low + ((high-low) >> 1);
k = i = low, j = mid + 1;
while (i <= mid && j <= high)
{
// if (S[i] < S[j])
// T[k++] = S[i++];
// else
// T[k++] = S[j++];
//高级写法
T[k++] = S[i] < S[j] ? S[i++] : S[j++];
}
while (i <= mid)
T[k++] = S[i++];
while (j <= high)
T[k++] = S[j++];
return;
}
//归并排序递归算法的常用写法
void mergeSort_1(int num[], int T[],int l, int r)
{
if (l == r)
return;
int mid = l + ((r-l)>>1);
mergeSort_1(num,T,l,mid);
mergeSort_1(num,T,mid+1,r);
int i, j, k;
i = l, j = mid+1, k = l;
while (i <= mid && j <= r)
T[k++] = num[i] < num[j] ? num[i++] : num[j++];
while (i <= mid)
T[k++] = num[i++];
while (j <= r)
T[k++] = num[j++];
//合并
for (i = l; i <= r; i++)
num[i] = T[i];
}
int main()
{
int S[1000] = { 0 }, T[1000] = { 0 }, i;
scanf("%d", &n);
for (i = 0; i < n; i++)
scanf("%d", &S[i]);
MergeSort(S, T, 0, n - 1);
// mergeSort_1(S,T,0,n-1);
for (i = 0; i < n; i++)
printf("%d ", T[i]);
return 0;
}
//非递归分治法归并排序
#include
#include
int min(int x, int y) {
return x < y ? x : y;
}
void Merge(int arr[], int low, int mid, int high)
{
//将排序结果放在临时数组,然后将临时数组的值复制给原数组
int* temp = (int*)malloc(sizeof(int) * (high - low));
int i = low, j = mid, k = 0;
while (i < mid && j < high)
temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];
while (i < mid)
temp[k++] = arr[i++];
while (j < high)
temp[k++] = arr[j++];
for (i = 0; i < high - low; i++)
arr[low+i] = temp[i];
return;
}
/*
width是距离start的大小,每次×2,模仿递归二分的合并,这个width大小没有限制,
只有width
int main()
{
int n;
scanf("%d", &n);
int i, num[1000] = { 0 };
for (i = 0; i < n; i++)
scanf("%d", &num[i]);
int width, start;
for (width = 1; width < n; width += width) {//分隔宽度,最小宽度为1
for (start = 0; start < n; start += width * 2) {//遍历数组,分隔区间,进行左右区间的合并
int low = start, mid = min(start + width, n), high = min(start + width * 2, n);//防止越界
Merge(num, low, mid, high);
}
//输出一趟合并之后数组的结果
for (i = 0; i < n; i++)
printf("%d ", num[i]);
printf("\n");
}
return 0;
}