定义: − 1 = i i 2 = − 1 \sqrt{-1}=i\quad i^{2}=-1 −1=ii2=−1
− 2 = 2 i \sqrt{-2}=\sqrt{2}i −2=2i
在数学里通常用i来代替sqrt(-1)。
幂运算:
虚数的幂 |
---|
i(-3) = i |
i(-2) = -1 |
i(-1) = -i |
i0 = 1 |
i1 = i |
i2 = -1 |
i3 = -i |
i4 = 1 |
… |
in = in-4 |
复数就是形如(a+bi)的数。 z = a + b i z=a+bi z=a+bi
显然地,当a=0时则z为纯虚数,当b=0时z为实数。
所有复数的集合为C。相应地,有 R ⊂ ≠ C \mathbb R\underset{\neq}{\subset}\mathbb C R=⊂C
复数z=a+bi,其共轭复数为a-bi。写作: z = a + b i z ˉ = a − b i z=a+bi\quad \={z}=a-bi z=a+bizˉ=a−bi
共轭复数有一些有趣的性质。
z ⋅ z ˉ = a 2 + b 2 z ·\={z}=a^{2}+b^{2} z⋅zˉ=a2+b2
建立一个平面直角坐标系,令 z = a + b i , 点 P = ( a , b ) z=a+bi,点P=(a,b) z=a+bi,点P=(a,b) 则 z 与 O B → 有着一些相似之处。 则z与\overrightarrow{OB}有着一些相似之处。 则z与OB有着一些相似之处。 ∣ z ∣ = ∣ O B → ∣ = a 2 + b 2 |z|=|\overrightarrow{OB}|=\sqrt{a^2+b^2} ∣z∣=∣OB∣=a2+b2
如上图, z 的幅角即 θ , 记作 A r g z 如上图,z的幅角即\phase{\theta},记作Argz 如上图,z的幅角即θ,记作Argz
Argz用弧度制表示,其值有无限个,为 θ + 2 n π ( n ∈ Z ) \theta + 2n\pi (n\in\mathbb Z) θ+2nπ(n∈Z)
其中,当n=0时称为幅角主值,记作 a r g z , a r g z ∈ ( − π , π ] argz\quad,argz\in (-\pi,\pi] argz,argz∈(−π,π]
当|z|=0时幅角没有意义。
a r g z = arctan b a (a>0) argz=\arctan{\frac{b}{a}} \tag{a>0} argz=arctanab(a>0) a r g z = π 2 (a=0,b>0) argz=\frac{\pi}{2}\tag{a=0,b>0} argz=2π(a=0,b>0) a r g z = − π 2 (a=0,b<0) argz=-\frac{\pi}{2}\tag{a=0,b<0} argz=−2π(a=0,b<0) a r g z = arctan b a + π (a<0,b>=0) argz=\arctan{\frac{b}{a}} +\pi \tag{a<0,b>=0} argz=arctanab+π(a<0,b>=0) a r g z = arctan b a − π (a<0,b<0) argz=\arctan{\frac{b}{a}} -\pi \tag{a<0,b<0} argz=arctanab−π(a<0,b<0)
以上为计算公式。
e i x = cos ( x ) + i sin ( x ) e^{ix} = \cos (x)+i\sin(x) eix=cos(x)+isin(x)
一个复数可以表示成多种形态。
z = ( a + b i ) z=\left(a+bi\right) z=(a+bi)
z = r ( cos θ + i sin θ ) r = ∣ z ∣ , θ = a r g z z=r\left(\cos\theta+i\sin\theta\right)\quad r=|z|,\theta=argz z=r(cosθ+isinθ)r=∣z∣,θ=argz
z = r e i θ r = ∣ z ∣ , θ = a r g z z=re^{i\theta}\quad r=|z|,\theta=argz z=reiθr=∣z∣,θ=argz
三角式和代数式可以通过欧拉公式进行变换。
z 1 = a 1 + b 1 i = r 1 ( cos θ 1 + i sin θ 1 ) = r 1 e i θ 1 z_{1}=a_{1}+b_{1}i=r_{1}(\cos\theta_{1}+i\sin\theta_{1})=r_{1}e^{i\theta_{1}} z1=a1+b1i=r1(cosθ1+isinθ1)=r1eiθ1 z 2 = a 2 + b 2 i = r 2 ( cos θ 2 + i sin θ 2 ) = r 2 e i θ 2 z_{2}=a_{2}+b_{2}i=r_{2}(\cos\theta_{2}+i\sin\theta_{2})=r_{2}e^{i\theta_{2}} z2=a2+b2i=r2(cosθ2+isinθ2)=r2eiθ2
z 1 + z 2 = ( a 1 + a 2 ) + i ( b 1 + b 2 ) z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right) z1+z2=(a1+a2)+i(b1+b2)
z 1 = a 1 + b 1 i = r 1 ( cos θ 1 + i sin θ 1 ) = r 1 e i θ 1 z_{1}=a_{1}+b_{1}i=r_{1}(\cos\theta_{1}+i\sin\theta_{1})=r_{1}e^{i\theta_{1}} z1=a1+b1i=r1(cosθ1+isinθ1)=r1eiθ1 z 2 = a 2 + b 2 i = r 2 ( cos θ 2 + i sin θ 2 ) = r 2 e i θ 2 z_{2}=a_{2}+b_{2}i=r_{2}(\cos\theta_{2}+i\sin\theta_{2})=r_{2}e^{i\theta_{2}} z2=a2+b2i=r2(cosθ2+isinθ2)=r2eiθ2
z 1 − z 2 = ( a 1 − a 2 ) + i ( b 1 − b 2 ) z_{1}-z_{2}=\left(a_{1}-a_{2}\right)+i\left(b_{1}-b_{2}\right) z1−z2=(a1−a2)+i(b1−b2)
z 1 = a 1 + b 1 i = r 1 ( cos θ 1 + i sin θ 1 ) = r 1 e i θ 1 z_{1}=a_{1}+b_{1}i=r_{1}(\cos\theta_{1}+i\sin\theta_{1})=r_{1}e^{i\theta_{1}} z1=a1+b1i=r1(cosθ1+isinθ1)=r1eiθ1 z 2 = a 2 + b 2 i = r 2 ( cos θ 2 + i sin θ 2 ) = r 2 e i θ 2 z_{2}=a_{2}+b_{2}i=r_{2}(\cos\theta_{2}+i\sin\theta_{2})=r_{2}e^{i\theta_{2}} z2=a2+b2i=r2(cosθ2+isinθ2)=r2eiθ2
z 1 z 2 = ( a 1 a 2 − b 1 b 2 ) + i ( a 1 b 2 + a 2 b 1 ) z_{1}z_{2}=\left(a_{1}a_{2}-b_{1}b_{2}\right)+i\left(a_{1}b_{2}+a_{2}b_{1}\right) z1z2=(a1a2−b1b2)+i(a1b2+a2b1)
以下内容为简化计算时的本人所推附加公式
当
z 1 = a 1 − b 1 i z_{1}=a_{1}-b_{1}i z1=a1−b1i z 2 = a 2 − b 2 i z_{2}=a_{2}-b_{2}i z2=a2−b2i时,
z 1 z 2 = ( a 1 a 2 − b 1 b 2 ) + i ( − a 1 b 2 − a 2 b 1 ) z_{1}z_{2}=\left(a_{1}a_{2}-b_{1}b_{2}\right)+i\left(-a_{1}b_{2}-a_{2}b_{1}\right) z1z2=(a1a2−b1b2)+i(−a1b2−a2b1)
当
z 1 = a 1 − b 1 i z_{1}=a_{1}-b_{1}i z1=a1−b1i z 2 = a 2 + b 2 i z_{2}=a_{2}+b_{2}i z2=a2+b2i时,
z 1 z 2 = ( a 1 a 2 + b 1 b 2 ) + i ( a 1 b 2 − a 2 b 1 ) z_{1}z_{2}=\left(a_{1}a_{2}+b_{1}b_{2}\right)+i\left(a_{1}b_{2}-a_{2}b_{1}\right) z1z2=(a1a2+b1b2)+i(a1b2−a2b1)
当
z 1 = a 1 + b 1 i z_{1}=a_{1}+b_{1}i z1=a1+b1i z 2 = a 2 − b 2 i z_{2}=a_{2}-b_{2}i z2=a2−b2i时,
z 1 z 2 = ( a 1 a 2 + b 1 b 2 ) + i ( − a 1 b 2 + a 2 b 1 ) z_{1}z_{2}=\left(a_{1}a_{2}+b_{1}b_{2}\right)+i\left(-a_{1}b_{2}+a_{2}b_{1}\right) z1z2=(a1a2+b1b2)+i(−a1b2+a2b1)
z 1 = a 1 + b 1 i = r 1 ( cos θ 1 + i sin θ 1 ) = r 1 e i θ 1 z_{1}=a_{1}+b_{1}i=r_{1}(\cos\theta_{1}+i\sin\theta_{1})=r_{1}e^{i\theta_{1}} z1=a1+b1i=r1(cosθ1+isinθ1)=r1eiθ1 z 2 = a 2 + b 2 i = r 2 ( cos θ 2 + i sin θ 2 ) = r 2 e i θ 2 z_{2}=a_{2}+b_{2}i=r_{2}(\cos\theta_{2}+i\sin\theta_{2})=r_{2}e^{i\theta_{2}} z2=a2+b2i=r2(cosθ2+isinθ2)=r2eiθ2
z 1 z 2 = z 1 z ˉ 2 z 2 z ˉ 2 = ( a 1 a 2 + b 1 b 2 ) + i ( a 2 b 1 − a 1 b 2 ) a 2 2 + b 2 2 \frac{z_{1}}{z_{2}}=\frac{z_{1}\=z_{2}}{z_{2}\=z_{2}}=\frac{\left(a_{1}a_{2}+b_{1}b_{2}\right)+i\left(a_{2}b_{1}-a_{1}b_{2}\right)}{a_{2}^{2}+b_{2}^{2}} z2z1=z2zˉ2z1zˉ2=a22+b22(a1a2+b1b2)+i(a2b1−a1b2) = ( a 1 a 2 + b 1 b 2 ) a 2 2 + b 2 2 + ( a 2 b 1 − a 1 b 2 ) a 2 2 + b 2 2 i =\frac{\left(a_{1}a_{2}+b_{1}b_{2}\right)}{a_{2}^{2}+b_{2}^{2}}+\frac{\left(a_{2}b_{1}-a_{1}b_{2}\right)}{a_{2}^{2}+b_{2}^{2}}i =a22+b22(a1a2+b1b2)+a22+b22(a2b1−a1b2)i
z = a + b i = r ( cos θ + i sin θ ) = r e i θ z=a+bi=r(\cos\theta+i\sin\theta)=re^{i\theta} z=a+bi=r(cosθ+isinθ)=reiθ z n = [ r ( cos θ + i sin θ ) ] 1 n \sqrt[n]{z}=\left[r\left(\cos\theta+i\sin\theta\right)\right]^{\frac{1}{n}} nz=[r(cosθ+isinθ)]n1
这个算式的解有n个,为: ω k = r 1 n ( cos 2 k π + θ n + i sin 2 k π + θ n ) ( k=0,1,2,3,...,n-1 ) \small{\omega_{k}=r^{\frac{1}{n}}(\cos\frac{2k\pi+\theta}{n}+i\sin\frac{2k\pi+\theta}{n})\quad\quad\quad\quad\quad}\tag{\tiny{k=0,1,2,3,...,n-1}} ωk=rn1(cosn2kπ+θ+isinn2kπ+θ)(k=0,1,2,3,...,n-1)
n z , n ∈ R = n a n b i n^z,n\in\mathbb R=n^{a}n^{bi} nz,n∈R=nanbi
复数域C下正弦函数:
sin z = e i z − e − i z 2 i \sin z=\frac{e^{iz}-e^{-iz}}{2i} sinz=2ieiz−e−iz余弦函数:
cos z = e i z + e − i z 2 \cos z=\frac{e^{iz}+e^{-iz}}{2} cosz=2eiz+e−iz
定义同时满足实数范围。即当z变为一个实数x时,上述两式所得结果符合实数域下正余弦。可以用欧拉公式辅助证明。证略。
复数满足两角和公式
同样利用欧拉公式。证略。
双曲正弦(sinh)的计算公式:
sinh x = e x − e − x 2 \sinh x=\frac{e^{x}-e^{-x}}{2} sinhx=2ex−e−x
双曲余弦(cosh)的计算公式:
cosh x = e x + e − x 2 \cosh x=\frac{e^{x}+e^{-x}}{2} coshx=2ex+e−x
z = a + b i z=a+bi z=a+bi sin z = sin ( a + b i ) = sin a cos b i + cos a sin b i \sin z=\sin{(a+bi)}=\sin a\cos bi+\cos a\sin bi sinz=sin(a+bi)=sinacosbi+cosasinbi cos z = cos ( a + b i ) = cos a cos b i − sin a sin b i \cos z=\cos{(a+bi)}=\cos a\cos bi-\sin a\sin bi cosz=cos(a+bi)=cosacosbi−sinasinbi
其中的cos bi和sin bi根据复数正弦函数的定义可以分别化为:
sin b i = e − b − e b 2 i = i e b − e − b 2 = i sinh b \sin bi = \frac{e^{-b}-e^{b}}{2i}= i\frac{e^{b}-e^{-b}}{2}=i\sinh b sinbi=2ie−b−eb=i2eb−e−b=isinhb cos b i = e − y + e y 2 = cosh b \cos bi=\frac{e^{-y}+e^{y}}{2}=\cosh b cosbi=2e−y+ey=coshb
将结论代入可得最终结果。
sin z = sin ( a + b i ) = sin a cosh b + i cos a sinh b \sin z=\sin{(a+bi)}=\sin a\cosh b+i\cos a\sinh b sinz=sin(a+bi)=sinacoshb+icosasinhb cos z = cos ( a + b i ) = cos a cosh b − i sin a sinh b \cos z=\cos{(a+bi)}=\cos a\cosh b-i\sin a\sinh b cosz=cos(a+bi)=cosacoshb−isinasinhb
tan ( z ) = sin ( z ) cos ( z ) \tan(z)=\frac{\sin(z)}{\cos(z)} tan(z)=cos(z)sin(z)
完