- 链表操作:分区与回文判断
共享家9527
数据结构数据结构c语言开发语言leetcode链表
目录链表分区(Partition)功能概述代码实现要点与难点注意事项链表回文判断(PalindromeList)功能概述代码实现要点与难点注意事项总结在链表相关的算法问题中,理解链表的基本结构和操作至关重要。今天我们深入探讨两个经典的链表问题:链表分区和链表回文判断,通过详细分析代码实现,理解其中的要点、难点和注意事项。作者主页:共享家9527-CSDN博客链表分区(Partition)功能概述链
- 什么是数据库的分区技术?
破碎的天堂鸟
学习教程数据库
数据库分区技术详解数据库分区技术是一种通过将大型表或索引分割成多个逻辑独立、物理可分离的单元(即分区)来优化性能和管理效率的核心策略。以下是其核心要点和应用的全面解析:1.定义与基本原理数据库分区(Partitioning)是一种物理数据库设计技术,通过特定规则(如范围、列表、哈希等)将表或索引划分为更小、更易管理的逻辑单元。每个分区可独立存储于不同物理位置(如磁盘或服务器),但对应用层透明,逻辑
- Kafka 同步机制关键点 2分钟讲明白
大博士.J
kafka
ApacheKafka通过副本同步机制来保证数据的高可用性和可靠性。Kafka的同步机制主要涉及以下几个核心概念:副本(Replication)Kafka的每个Partition都会有多个副本(Replica),分为:Leader副本:负责处理生产者和消费者的所有请求。Follower副本:仅从Leader同步数据,不直接处理请求。副本数由replication.factor参数配置。例如:rep
- 力扣215. 数组中的第K个最大元素
hyssop2019
算法leetcode算法排序算法
题目描述给定整数数组nums和整数k,请返回数组中第k个最大的元素。请注意,你需要找的是数组排序后的第k个最大的元素,而不是第k个不同的元素。你必须设计并实现时间复杂度为O(n)的算法解决此问题。示例1:输入:[3,2,1,5,6,4],k=2输出:5示例2:输入:[3,2,3,1,2,4,5,5,6],k=4输出:4提示:1cursor){returnpartition(nums,cursor+
- MySQL数据库架构设计:分片与分区策略实战
墨瑾轩
一起学学数据库【一】mysql数据库架构adb
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣在数据库的魔法森林中,MySQL就像是一位智慧的老树精,而分片(Sharding)与分区(Partitioning)则是它手中的两把神秘钥匙,能够打开数据高效存储与快速检索的大门。今天,我们就一起踏上一场奇幻之旅,探索如何运用这两把钥匙,打造一个既强大又灵活的
- clickhouse报错Too many partitions for single INSERT block
qq_35640866
clickhouseclickhousesql数据库
Code:252,e.displayText()=DB::Exception:ToomanypartitionsforsingleINSERTblock(morethan100).Thelimitiscontrolledby'max_partitions_per_insert_block'setting.Largenumberofpartitionsisacommonmisconception.I
- kafka rocketmq rabbitmq 都是怎么实现顺序消费的
C18298182575
kafkarocketmqrabbitmq
Kafka、RocketMQ和RabbitMQ都支持顺序消费,但它们的实现机制有所不同。以下是这三种消息队列实现顺序消费的方式:1.Kafka的顺序消费实现机制分区内有序:Kafka保证单个分区(Partition)内的消息是有序的。消息按照写入分区的顺序存储,消费者按照相同的顺序消费。分区间无序:不同分区之间的消息顺序是不保证的。例如,消息A写入分区0,消息B写入分区1,消费者可能会先消费到消息
- hive开窗函数总结
weixin_46134848
大数据hivemysql
文章目录概要整体架构流程示例1示例2小结概要hive开窗函数总结整体架构流程1.窗口函数的基本用法函数名()over()over关键字来指定函数执行的范围,包含三个分析子句:分组(partitionby)子句,排序(orderby)子句,窗口(rows)子句函数名(字段名)over(partitionbyorderbyrowsbetween)窗口大小可以通过rowsbetween…and…来限定,
- Hive MR & Spark & Yarn参数优化总结
大数据侠客
hive相关问题汇总及解决hivesparkmryarn参数优化
一、hivemr参数调优:sethive.optimize.ppd=true;--开启谓词下推。--动态分区参数sethive.exec.mode.local.auto=true;sethive.exec.dynamic.partition.mode=nonstrict;--默认是strict,表示至少有一个静态分区,nonstri
- CAP 公理解析:分布式系统中的一致性、可用性与分区容错性
Vitalia
系统设计分布式系统CAP
文章目录1.CAP公理的核心概念1.1一致性(Consistency)1.2可用性(Availability)1.3分区容错性(PartitionTolerance)2.CAP公理的三种选择2.1CA(一致性+可用性)2.2CP(一致性+分区容错性)2.3AP(可用性+分区容错性)3.CAP公理的实际应用3.1CP系统(一致性+分区容错性)示例1:ZooKeeper示例2:etcd3.2AP系统(
- Android 动态分区详解(四) OTA 中对动态分区的处理
洛奇看世界
Android动态分区Android虚拟A/B分区android动态分区
文章目录0.导读1.payload中的动态分区数据2.制作动态分区升级包2.1制作升级包2.2`dynamic_partition_info_file`参数2.3`dynamic_partitions_info.txt`文件2.4总结3.打包动态分区数据3.1解析动态分区数据3.2输出动态分区数据3.3动态分区数据打包流程4.解包并更新动态分区数据4.1设备处理接收到的Manifest数据4.2更
- linux 同一机器 mongodb 分片,MongoDB自动分片介绍
吴炳忠
linux同一机器mongodb分片
MongoDB自动分片介绍高性能、易扩展一直是MongoDB的立足之本,同时规范的文档和接口更让其深受用户喜爱,这一点从分析DB-Engines的得分结果不难看出——仅仅1年时间,MongoDB就完成了第7名到第五名的提升,得分就从124分上升至214分,上升值是第四名PotgreSQL的两倍,同时当下与PostgreSQL的得分也只相差16分不到。1.片键介绍数据划分(partitioning)
- 聚类分析|k-means聚类方法及其Python实现
皖山文武
数据挖掘商务智能kmeans聚类python数据挖掘机器学习
k-means聚类方法及其Python实现0.k-means算法简介1.k-means算法工作原理2.k-means算法流程3.k–means算法的Python实现0.k-means算法简介k-means算法由MacQueen在1967年提出。是一种经典的基于划分的聚类方法。划分方法(PartitioningMethod)是基于距离判断样本相似度,通过不断迭代将含有多个样本的数据集划分成若干个簇,
- Laravel如何实现MySQL分库分表的功能?使用场景是什么?底层原理是什么?
快点好好学习吧
Laravellaravelmysqlphp
一、MySQL分库分表的定义1.核心定义分库(Sharding):将数据分散到多个数据库中,以减轻单个数据库的压力。分表(Partitioning):将一个大表拆分为多个小表,通常基于某种规则(如用户ID或时间戳)。目的:提高系统的扩展性、性能和可用性。二、使用场景1.常见使用场景高并发系统:数据量巨大且访问频率高的场景(如电商平台、社交网络)。大数据存储:单表数据量超过千万甚至亿级时,需要分表以
- MapReduce:分布式并行编程的基石
JAZJD
mapreduce分布式大数据
目录概述分布式并行编程分布式并行编程模型分布式并行编程框架MapReduce模型简介Map和Reduce函数Map函数Map函数的输入和输出Map函数的常见操作Reduce函数Reduce函数的输入和输出Reduce函数的常见操作工作流程概述各个阶段1.输入分片2.Map阶段3.Shuffle阶段4.Reduce阶段MapReduce工作流程总结Shuffle过程详解1.分区(Partitioni
- Hadoop、Spark、Flink Shuffle对比
逆袭的小学生
hadoopsparkflink
一、Hadoop的shuffle前置知识:Map任务的数量由Hadoop框架自动计算,等于分片数量,等于输入文件总大小/分片大小,分片大小为HDFS默认值128M,可调Reduce任务数由用户在作业提交时通过Job.setNumReduceTasks(int)设置数据分配到Reduce任务的时间点,在Map任务执行期间,通过Partitioner(分区器)确定每个键值对的目标Reduce分区。默认
- MySQL深分页详解与优化实践
一碗黄焖鸡三碗米饭
mysql数据库后端java深分页
目录1.什么是深分页示例:传统分页2.深分页的性能瓶颈2.1MySQL分页查询的执行原理2.2深分页导致的性能问题3.如何优化深分页查询3.1使用游标分页(Cursor-basedPagination)游标分页的实现3.2游标分页的优势3.3游标分页的缺点3.4使用索引优化分页查询创建索引3.5限制深分页3.6分区表(Partitioning)问题分析解决方案:使用分区表代码示例优势与局限2.4预
- 解决 Electron 中实现独立浏览器实例和隔离登录态的问题
AI天才研究院
计算架构师必知必会系列实用工具箱electronjavascript前端
要实现不同窗口的cookies互相独立,主要有以下几种方案:使用partition参数创建独立的session:letwin=newBrowserWindow({width:1600,height:1000,
- 1745. 分割回文串 IV
咔咔咔的
leetcodec++
1745.分割回文串IV题目链接:1745.分割回文串IV代码如下://参考链接:https://leetcode.cn/problems/palindrome-partitioning-iv/solutions/3589992/zhi-jie-diao-yong-1278-ti-dai-ma-pythonj-u7pwclassSolution{public:boolcheckPartitioni
- 解决kafka3.0.0在windows下不能启动的问题
raiseup2
practicewindowskafkajava后端开发语言
看到一个问题,说在用java代码发送kafka消息的时候能指定一个partition参数:importorg.apache.kafka.clients.producer.ProducerRecord;publicclassKafkaProducerExample{publicstaticvoidmain(String[]args){Stringtopic="test";intpartition=0
- Flink SQL的Top-N实战
听挽风讲大数据
Flinkflink大数据
1Top-N目前仅Blink计划器支持Top-N。Top-N查询时根据列排序找到N个最大或最小的值。最大值集合最小值集都被视为是一种Top-N的查询。若在批处理或流处理的表中需要显示出满足条件的N个最底层记录或最顶层记录,Top-N查询将会十分有用。得到的结果集将可以进行进一步的分析。Flink使用OVER窗口条件和过滤条件相结合以进行Top-N查询。利用OVER窗口的PARTITIONBY子句的
- hive之leg函数
三生暮雨渡瀟瀟
hivehive
从博客上发现两个面试题,其中有个用到了lag函数。整理学习LAG函数是Hive中常用的窗口函数,用于访问同一分区内前一行(或前N行)的数据。它在分析时间序列数据、计算相邻记录差异等场景中非常有用。一、语法LAG(column,offset,default)OVER(PARTITIONBYpartition_expressionORDERBYsort_expression[ASC|DESC])col
- Kafka 为什么会消息堆积?
忍者算法
kafka分布式
Kafka定期清理Partition,但消息堆积(backlog)依然可能发生,主要是因为Kafka的清理机制和消息消费进度是两回事。我们可以用一个快递仓库的类比来解释。类比:Kafka就像一个快递仓库生产者(Producer)=快递员,不断往仓库里送包裹(消息)。消费者(Consumer)=快递员从仓库取件,派送给客户。Kafka的清理机制=仓库的定期清理,把太久没人取走的包裹扔掉,以免仓库爆满
- Oracle管理员高级操作的详细步骤说明,涵盖性能优化、安全管理、高可用性配置等核心内容
最爱で毛毛熊
Oracle数据库oracle
以下是Oracle管理员高级操作的详细步骤说明,涵盖性能优化、安全管理、高可用性配置等核心内容:一、表分区管理(提升大表性能)创建范围分区表CREATETABLEsales(idVARCHAR2(36),sale_dateDATE,amountNUMBER)PARTITIONBYRANGE(sale_date)INTERVAL(NUMTOYMINTERVAL(1,'MONTH'))--按月自动分区
- 《Kafka 理解: Broker、Topic 和 Partition》
频繁输入,积极输出
kafka分布式
Kafka核心架构解析:从概念到实践Kafka是一个分布式流处理平台,广泛应用于日志收集、实时数据分析和事件驱动架构。本文将从Kafka的核心组件、工作原理、实际应用场景等方面进行详细解析,帮助读者深入理解Kafka的架构设计及其在大数据领域的重要性。1.Kafka的背景与应用场景1.1Kafka的背景Kafka最初由LinkedIn开发,用于解决其大规模数据处理的挑战。2011年,Kafka开源
- 或许我们都被分库分表约束了思维
京东云开发者
京东云
作者:张俊杰概述这篇文章没什么太多的干货,纯纯是一篇讨论和思考帖。从业数据库领域三年有余了,从分库分表中间件到数据库团队内核学到了很多东西。也接触了很多项目,包括TiDB、Vitess、Polardb、StarDB等等。国内的项目好像很多都聚焦于分库分表的概念,包括很多的数据库团队都在尝试这个概念的落地和沉溺于性能的跑分。最近我在预览MySQL官方,看到了Partitioning的概念,而且占据了
- Partition架构
m0_74825656
面试学习路线阿里巴巴架构
优质博文:IT-BLOG-CNPartition架构【1】结构:Region至少3个Zone,Zone内至少两个Partition,Partition内至少1个K8SMemberCluster;【2】故障域:故障域及核心链路至少Zone内收敛,甚至Partition收敛。故障域之间不应该有交互(状态流等);【3】变更规范:不同时变更多个Zone,甚至不同时变更多个Partition;【4】Fede
- MySQL表转移数据的三种方式
m0_74823471
面试学习路线阿里巴巴mysql数据库
说明:在一些情况,像大表修改表结构,重新建立分区(对已有表建立分区,对历史数据是不生效的),或者表备份,我们需要将表的数据,从一张表转移到另外一张表里。本文介绍,MySQL表转移表数据的三种方式;方式一使用下面两行命令,将数据导出为一个sql,再导入到目标表里;#导出mysqldump-uroot-p--no-create-info--skip-extended-insert-tpartition
- 腾讯面试:大厂必问消息队列场景面试题
消息队列腾讯面试问题
今天,我将那些大厂必问的消息队列的场景问题为大家整理出来,本文将跟大家一起来探讨如何回答这些问题。为什么要使用消息队列?保证消息有序,一个topic只能有一个partition吗?(消息顺序)业务突然增长,导致消息消费不过来怎么办?(消息积压)生产者收到写入成功响应后消息一定不会丢失吗?(消息丢失)高并发场景下怎么保证消息不会重复消费?(重复消费)如何保证消息的可靠性?各大消息队列中间件对比及使用
- Oracle数据库分区自动删除
deadknight9
Oracle运维数据库
说明:该存储过程部署后,设置成定时任务,每天执行。每次执行删除partition_position='2'的分区,删除之后,partition_position='3'的分区会前移到partition_position为'2';CREATEORREPLACEPROCEDUREBILL_CENT_JILI.DAY_PARTITIONASv_p_namevarchar2(2000);v_p_numnu
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><