《向量数据库指南》——用Milvus cloud搭建聊天机器人

作为向量数据库的佼佼者,Milvus 适用于各种需要借助高效和可扩展向量搜索功能的 AI 应用。

举个例子,如果想要搭建一个聊天机器人,Milvus 一定是其进行数据管理的首选。那么,如何让这个应用程序开发变得易于管理及更好理解,那就需要借助 Towhee(https://towhee.io/)了。Towhee 是一个新兴的机器学习(ML)框架,可以简化了实现和编排复杂 ML 模型的过程。

《向量数据库指南》——用Milvus cloud搭建聊天机器人_第1张图片

接下来我将介绍如何通过 Python 使用 Milvus + Towhee 搭建一个基础的 AI 聊天机器人。本文会重点讲解如何处理、分析非结构化数据及存储和查询向量数据。

总结

《向量数据库指南》——用Milvus cloud搭建聊天机器人_第2张图片

回顾一下,我们首先创建了 Towhee pipeline 来处理非结构化数据,并将其转化为向量并存储在 Milvus 向量数据库中。然后,搭建了一个查询 Pipeline,在聊天机器人中接入 LLM。最终,一个基础的聊天机器人界面便搭建完成。

《向量数据库指南》——用Milvus cloud搭建聊天机器人_第3张图片

简言之,Milvus 高度可扩展,提供高效的向量相似性搜索功能,能够帮助开发者轻松搭建聊天机器人、推荐系统、图片或文本识别等 ML 和 AI 应用。期待大家用 Milvus 搭建更出更棒的应用!

你可能感兴趣的:(《向量数据库指南》,数据库,人工智能,AI-native,向量数据库,Milvus,Cloud)