C++入门

一、C++关键字

C++总计63个关键字,C语言32个关键字。

C++入门_第1张图片

二、命名空间

在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存
在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,
以避免命名冲突或名字污染,namespace关键字的出现就是针对这种问题的。

#include
using namespace std;
#include


//我们在定义和函数库里面的名字冲突
//项目组,多个人之间定义的名字冲突
int rand = 0;

//C语言没办法解决命名冲突的问题,所以C++提出了  namespace	来解决。
int main()
{

	//命名空间
	//I/O流
	//缺省参数
	//函数重载
	//引用
	return 0;
}

2.1、命名空间的定义

定义命名空间,需要使用到namespace关键字,后面跟命名空间的名字,然后接一对{}即可,{}
中即为命名空间的成员。

注意:一个命名空间就定义了一个新的作用域,命名空间中的所有内容都局限于该命名空间中

2.2、命名空间的使用

 //命名空间域        命名空间域之影响使用,不影响生命周期       命名空间可以嵌套
#include"A.h"
#include"B.h"
//
//1.指定命名空间访问
//2.全局展开        一般情况下不建议全局展开  ( 展开相当于没有命名空间了 )
//3.部分展开  
using std::cout;
using std::cin;
using std::endl;
using namespace A;
using namespace B;
using namespace a;
int main()
{
	printf("%d ", X);
	printf("%d ", b::X);

	X++;
	b::X--;
	printf("%d ", X);
	printf("%d ", b::X);

	cout << "12345" << endl;

	return 0;
}

三、输入输出

cin/cout

 说明:
1. 使用cout标准输出对象(控制台)和cin标准输入对象(键盘)时,必须包含< iostream >头文件
以及按命名空间使用方法使用std。
2. cout和cin是全局的流对象,endl是特殊的C++符号,表示换行输出,他们都包含在包含<
iostream >头文件中。
3. <<是流插入运算符,>>是流提取运算符。
4. 使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动控制格式。
C++的输入输出可以自动识别变量类型。

I/O流
int main()
{
	int x, y;
	//流提取>>
	cin >> x >> y;

	//流 插入<<
	cout << "x的值为:"<> n;
	double* a = (double*)malloc(sizeof(double) * n);
	if (a == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}
	for (int i = 0; i < n; i++)
	{
		cin >> a[i];
	}
	for (int i = 0; i < n; i++)
	{
		//cout << a[i] << endl;   
		printf("%.2f\n", a[i]);
	}
	return 0;
}

关于cout和cin还有很多更复杂的用法,比如控制浮点数输出精度,控制整形输出进制格式。

1. 在日常练习中,建议直接using namespace std即可,这样就很方便。

2. using namespace std展开,标准库就全部暴露出来了,如果我们定义跟库重名的类型/对
象/函数,就存在冲突问题。该问题在日常练习中很少出现,但是项目开发中代码较多、规模
大,就很容易出现。所以建议在项目开发中使用,像std::cout这样使用时指定命名空间 +
using std::cout展开常用的库对象/类型等方式。

四、缺省参数

4.1、缺省参数概念

缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时,如果没有指定实
参则采用该形参的缺省值,否则使用指定的实参。

缺省参数
void func(int n = 0)
{
	cout << n << endl;
}

int main()
{
	func(1);
	func();
	return 0;
}

4.2、缺省参数分类

1、全缺省参数

void Func(int a = 10, int b = 20, int c = 30)
{
cout<<"a = "<void Func(int a, int b = 10, int c = 20)
{
cout<<"a = "<int Add(int left, int right)
{
    cout << "int Add(int left, int right)" << endl;
    return left + right;
}

double Add(double left, double right)
{
    cout << "double Add(double left, double right)" << endl;
    return left + right;
}

2、参数个数不同

void f()
{
    cout << "f()" << endl;
}
void f(int a)
{
    cout << "f(int a)" << endl;
}

3、参数顺序不同

void f(int a, char b)
{
    cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{
    cout << "f(char b, int a)" << endl;
}

六、引用

6.1、引用的概念

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空
间,它和它引用的变量共用同一块内存空间。

使用方法:类型& 引用变量名(对象名) = 引用实体;

void TestRef()
{
    int a = 10;
    int& ra = a;//<====定义引用类型
    printf("%p\n", &a);
    printf("%p\n", &ra);
}

注意:引用类型必须和引用实体是同种类型的

6.2、引用的特征

1. 引用在定义时必须初始化
2. 一个变量可以有多个引用
3. 引用一旦引用一个实体,再不能引用其他实体

void TestRef()
{
    int a = 10;
    // int& ra; // 该条语句编译时会出错
    int& ra = a;
    int& rra = a;
    printf("%p %p %p\n", &a, &ra, &rra);
}

6.3、常引用

void TestConstRef()
{
    const int a = 10;
    //int& ra = a; // 该语句编译时会出错,a为常量
    const int& ra = a;
    // int& b = 10; // 该语句编译时会出错,b为常量
    const int& b = 10;
    double d = 12.34;
    //int& rd = d; // 该语句编译时会出错,类型不同
    const int& rd = d;
}

所以常引用时要用const修饰。

6.4、使用场景

1、做参数

void Swap(int& left, int& right)
{
    int temp = left;
    left = right;
    right = temp;
}

2、做返回值

int& Count()
{
    static int n = 0;
    n++;
    // ...
    return n;
}

注意:如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用
引用返回,如果已经还给系统了,则必须使用传值返回。

6.5、传值传引用效率比较

以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直
接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效
率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。

6.6、指针和引用的区别

在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。

在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。

引用和指针的不同点:
1. 引用概念上定义一个变量的别名,指针存储一个变量地址。
2. 引用在定义时必须初始化,指针没有要求
3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型实体
4. 没有NULL引用,但有NULL指针
5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占4个字节)
6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小


int main()
{
    int a = 10;
    int& ra = a;
    cout<<"&a = "<<&a<C++入门_第2张图片

如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的
调用

7.2、内联函数的特性

1. inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会
用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运
行效率。
2. inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建
议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不
是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。
3. inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址
了,链接就会找不到

8、auto

int TestAuto()
{
    return 10;
}
int main()
{
    int a = 10;
    auto b = a;
    auto c = 'a';
    auto d = TestAuto();
    cout << typeid(b).name() << endl;
    cout << typeid(c).name() << endl;
    cout << typeid(d).name() << endl;
    //auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
    return 0;
}

使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto
的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编
译期会将auto替换为变量实际的类型。

1、auto与指针和引用结合起来使用
用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&
2、在同一行定义多个变量
当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译
器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量

3、auto不能直接用来声明数组

4、auto不能作为函数的参数
5、auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有
lambda表达式等进行配合使用

九、基于范围的for循环

9.1范围for的语法

我们在C++中写一个for循环时可以这样写

void TestFor()
{
    int array[] = { 1, 2, 3, 4, 5 };
    for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
        array[i] *= 2;
    for (int* p = array; p < array + sizeof(array)/ sizeof(array[0]); ++p)
        cout << *p << endl;
}

对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因
此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范
围内用于迭代的变量,第二部分则表示被迭代的范围。

void TestFor()
{
    int array[] = { 1, 2, 3, 4, 5 };
    for(auto& e : array)
        e *= 2;
    for(auto e : array)
        cout << e << " ";
    return 0;
}

与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环

9.2、范围for的使用条件

1. for循环迭代的范围必须是确定的
对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供
begin和end的方法,begin和end就是for循环迭代的范围。
注意:以下代码就有问题,因为for的范围不确定
 

void TestFor(int array[])
{
    for(auto& e : array)
    cout<< e <

2. 迭代的对象要实现++和==的操作。
 

十、指针空值nullptr

在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现
不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下
方式对其进行初始化:

void TestPtr()
{
        int* p1 = NULL;
        int* p2 = 0;
// ……
}

NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。
 

void f(int)
{
    cout<<"f(int)"<

程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的
初衷相悖。

注意:

1. 在使用nullptr表示指针空值时不需要包含头文件,因为nullptr是C++11作为新关键字引入
2. 在C++11中,sizeof(nullptr) 与 sizeof((void*)0)所占的字节数相同。
3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。

你可能感兴趣的:(c++,开发语言)