InnoDB 在处理更新语句的时候,只做了写日志这一个磁盘操作。这个日志叫作 redo log(重做日志),在更新内存写完 redo log 后,就返回给客户端,本次更新成功。
当内存数据页跟磁盘数据页内容不一致的时候,我们称这个内存页为“脏页”。内存数据写入到磁盘后,内存和磁盘上的数据页的内容就一致了,称为“干净页”。
这里可以通过一个"孔乙己赊账"的案例来分析一下:
假设原来孔乙己欠账 10 文,这次又要赊 9 文。
平时执行很快的更新操作,其实就是在写内存和日志,而 MySQL 偶尔“抖”一下的那个瞬间,可能就是在刷脏页(flush)
继续用咸亨酒店掌柜的这个例子,想一想:掌柜在什么情况下会把粉板上的赊账记录改到账本上?
这个场景,对应的就是 InnoDB 的 redo log 写满了。这时候系统会停止所有更新操作,把 checkpoint 往前推进,redo log 留出空间可以继续写
checkpoint 可不是随便往前修改一下位置就可以的。比如图 2 中,把 checkpoint 位置从 CP 推进到 CP’,就需要将两个点之间的日志(浅绿色部分),对应的所有脏页都 flush 到磁盘上。之后,图中从 write pos 到 CP’之间就是可以再写入的 redo log 的区域。
这种场景,对应的就是系统内存不足。当需要新的内存页,而内存不够用的时候,就要淘汰一些数据页,空出内存给别的数据页使用。如果淘汰的是“脏页”,就要先将脏页写到磁盘。
这种场景,对应的就是 MySQL 认为系统“空闲”的时候。当然,MySQL“这家酒店”的生意好起来可是会很快就能把粉板记满的,所以“掌柜”要合理地安排时间,即使是“生意好”的时候,也要见缝插针地找时间,只要有机会就刷一点“脏页”。
这种场景,对应的就是 MySQL 正常关闭的情况。这时候,MySQL 会把内存的脏页都 flush 到磁盘上,这样下次 MySQL 启动的时候,就可以直接从磁盘上读数据,启动速度会很快。
第三种情况是属于 MySQL 空闲时的操作,这时系统没什么压力,而第四种场景是数据库本来就要关闭了。这两种情况下,不会太关注“性能”问题。所以这里,主要来分析一下前两种场景下的性能问题。
InnoDB 的策略是尽量使用内存,因此对于一个长时间运行的库来说,未被使用的页面很少。
而当要读入的数据页没有在内存的时候,就必须到缓冲池中申请一个数据页。这时候只能把最久不使用的数据页从内存中淘汰掉:如果要淘汰的是一个干净页,就直接释放出来复用;但如果是脏页呢,就必须将脏页先刷到磁盘,变成干净页后才能复用。
刷脏页虽然是常态,但是出现以下这两种情况,都是会明显影响性能的:
所以,InnoDB 需要有控制脏页比例的机制,来尽量避免上面的这两种情况。
首先,要正确地告诉 InnoDB 所在主机的 IO 能力,这样 InnoDB 才能知道需要全力刷脏页的时候,可以刷多快。
用到 innodb_io_capacity 这个参数了,它会告诉 InnoDB 你的磁盘能力。建议设置成磁盘的 IOPS。
磁盘的 IOPS 可以通过 fio 这个工具来测试
测试磁盘随机读写的命令:
fio -filename=$filename -direct=1 -iodepth 1 -thread -rw=randrw -ioengine=psync -bs=16k -size=500M -numjobs=10 -runtime=10 -group_reporting -name=mytest
InnoDB 怎么控制引擎按照“全力”的百分比来刷脏页
刷盘速度就是要参考这两个因素:
参数 innodb_max_dirty_pages_pct 是脏页比例上限,默认值是 75%。
InnoDB 会根据当前的脏页比例(假设为 M),算出一个范围在 0 到 100 之间的数字,伪代码如下:
F1(M)
{
if M>=innodb_max_dirty_pages_pct then
return 100;
return 100*M/innodb_max_dirty_pages_pct;
}
InnoDB 每次写入的日志都有一个序号,当前写入的序号跟 checkpoint 对应的序号之间的差值,我们假设为 N。InnoDB 会根据这个 N 算出一个范围在 0 到 100 之间的数字,这个计算公式可以记为 F2(N)。
F2(N) 算法比较复杂,N 越大,算出来的值越大
根据上述算得的 F1(M) 和 F2(N) 两个值,取其中较大的值记为 R,之后引擎就可以按照 innodb_io_capacity 定义的能力乘以 R% 来控制刷脏页的速度。
流程图如下:
要尽量避免这种查询慢的情况,就要合理地设置 innodb_io_capacity 的值,并且平时要多关注脏页比例,不要让它经常接近 75%。
脏页比例是通过 Innodb_buffer_pool_pages_dirty/Innodb_buffer_pool_pages_total 得到的,具体的命令参考下面的代码:
mysql> select VARIABLE_VALUE into @a from global_status where VARIABLE_NAME = 'Innodb_buffer_pool_pages_dirty';
select VARIABLE_VALUE into @b from global_status where VARIABLE_NAME = 'Innodb_buffer_pool_pages_total';
select @a/@b;
一旦一个查询请求需要在执行过程中先 flush 掉一个脏页时,这个查询就可能要比平时慢了。而 MySQL 中的一个机制,可能让你的查询会更慢:在准备刷一个脏页的时候,如果这个数据页旁边的数据页刚好是脏页,就会把这个“邻居”也带着一起刷掉;而且这个把“邻居”拖下水的逻辑还可以继续蔓延,也就是对于每个邻居数据页,如果跟它相邻的数据页也还是脏页的话,也会被放到一起刷。
在 InnoDB 中,innodb_flush_neighbors 参数就是用来控制这个行为的,值为 1 的时会有“连坐”机制,值为 0 时表示不找邻居,仅刷自己。
找“邻居”这个优化在机械硬盘时代是很有意义的,可以减少很多随机 IO。机械硬盘的随机 IOPS 一般只有几百,相同的逻辑操作减少随机 IO 就意味着系统性能的大幅度提升。
如果使用的是 SSD 这类 IOPS 比较高的设备的话,我就建议你把 innodb_flush_neighbors 的值设置成 0
在 MySQL 8.0 中,innodb_flush_neighbors 参数的默认值已经是 0 了。
思考
一个内存配置为 128GB、innodb_io_capacity 设置为 20000 的大规格实例,正常会建议你将 redo log 设置成 4 个 1GB 的文件。
但如果你在配置的时候不慎将 redo log 设置成了 1 个 100M 的文件,会发生什么情况呢?又为什么会出现这样的情况呢?
每次事务提交都要写 redo log,如果设置太小,很快就会被写满,也就是下面这个图的状态,这个“环”将很快被写满,write pos 一直追着 CP。这时候系统不得不停止所有更新,去推进 checkpoint。这时,看到的现象就是磁盘压力很小,但是数据库出现间歇性的性能下跌。
问题
数据库占用空间太大,我把一个最大的表删掉了一半的数据,怎么表文件的大小还是没变?
一个 InnoDB 表包含两部分,
在 MySQL 8.0 版本以前,表结构是存在以.frm 为后缀的文件里。
而 MySQL 8.0 版本,则已经允许把表结构定义放在系统数据表中了。因为表结构定义占用的空间很小
参数 innodb_file_per_table控制表数据是存在共享表空间里,还是单独的文件中。
从 MySQL 5.6.6 版本开始,它的默认值就是 ON 了。
建议不论使用 MySQL 的哪个版本,都将这个值设置为 ON。
因为,一个表单独存储为一个文件更容易管理,而且在你不需要这个表的时候,通过 drop table 命令,系统就会直接删除这个文件。而如果是放在共享表空间中,即使表删掉了,空间也是不会回收的
删除整个表的时候,可以使用 drop table 命令回收表空间,但是,遇到的更多的删除数据的场景是删除某些行,这就遇到了开头的问题:表中的数据被删除了,但是表空间却没有被回收。
先来看看一个B+ 树索引示意图:
假设,要删掉 R4 这个记录,InnoDB 引擎只会把 R4 这个记录标记为删除。如果之后要再插入一个 ID 在 300 和 600 之间的记录时,可能会复用这个位置。但是,磁盘文件的大小并不会缩小。
现在,已经知道了 InnoDB 的数据是按页存储的,如果删掉了一个数据页上的所有记录,整个数据页就可以被复用了。但是,数据页的复用跟记录的复用是不同的。
如果相邻的两个数据页利用率都很小,系统就会把这两个页上的数据合到其中一个页上,另外一个数据页就被标记为可复用。
如果用 delete 命令把整个表的数据删除,所有的数据页都会被标记为可复用。但是磁盘上,文件不会变小。
delete 命令只是把记录的位置,或者数据页标记为了“可复用”,但磁盘文件的大小是不会变,通过 delete 命令是不能回收表空间的
不止是删除数据会造成空洞,插入数据也会。
可以看到,由于 page A 满了,再插入一个 ID 是 550 的数据时,就不得不再申请一个新的页面 page B 来保存数据了。
页分裂完成后,page A 的末尾就留下了空洞(注意:实际上,可能不止 1 个记录的位置是空洞)。
更新索引上的值,可以理解为删除一个旧的值,再插入一个新值。这也是会造成空洞的。
大量增删改的表,都是可能是存在空洞的。所以,如果能够把这些空洞去掉,就能达到收缩表空间的目的。而重建表,就可以达到这样的目的。
如果有一个表 A,需要做空间收缩,为了把表中存在的空洞去掉,可以新建一个与表 A 结构相同的表 B,然后按照主键 ID 递增的顺序,把数据一行一行地从表 A 里读出来再插入到表 B 中。
由于表 B 是新建的表,所以表 A 主键索引上的空洞,在表 B 中就都不存在了。显然地,表 B 的主键索引更紧凑,数据页的利用率也更高。如果把表 B 作为临时表,数据从表 A 导入表 B 的操作完成后,用表 B 替换 A,从效果上看,就起到了收缩表 A 空间的作用。
可以使用 alter table A engine=InnoDB 命令来重建表,临时表 B (server层创建)不需要自己创建,MySQL 会自动完成转存数据、交换表名、删除旧表的操作。
花时间最多的步骤是往临时表插入数据的过程,如果在这个过程中,有新的数据要写入到表 A 的话,就会造成数据丢失。因此,在整个 DDL 过程中,表 A 中不能有更新。也就是说,这个 DDL 不是 Online 的,MySQL 5.6 版本开始引入的 Online DDL,对这个操作流程做了优化。
Online DDL 之后,重建表的流程:
上图流程中,alter 语句在启动的时候需要获取 MDL 写锁,但是这个写锁在真正拷贝数据之前就退化成读锁了。
为什么要退化呢?为了实现 Online,MDL 读锁不会阻塞增删改操作。
那为什么不干脆直接解锁呢?为了保护自己,禁止其他线程对这个表同时做 DDL。
对于一个大表来说,Online DDL 最耗时的过程就是拷贝数据到临时表的过程,这个步骤的执行期间可以接受增删改操作。所以,相对于整个 DDL 过程来说,锁的时间非常短。对业务来说,就可以认为是 Online 的。
**重建方法都会扫描原表数据和构建临时文件。对于很大的表来说,这个操作是很消耗 IO 和 CPU 资源的。**因此,如果是线上服务,要很小心地控制操作时间。如果想要比较安全的操作的话,推荐使用 GitHub 开源的 gh-ost 来做。
表 A 使用Online DDL重建出来的数据是放在“tmp_file”里的,这个临时文件是 InnoDB 在内部创建出来的。
整个 DDL 过程都在 InnoDB 内部完成。对于 server 层来说,没有把数据挪动到临时表,是一个“原地”操作,这就是“inplace”名称的来源。
如果有一个 1TB 的表,现在磁盘间是 1.2TB,能不能做一个 inplace 的 DDL 呢?答案是不能。因为,tmp_file 也是要占用临时空间的。
alter table t engine=InnoDB,其实隐含的意思是:
alter table t engine=innodb,ALGORITHM=inplace;
inplace 对应的就是拷贝表的方式了,用法是:
alter table t engine=innodb,ALGORITHM=copy;
当使用 ALGORITHM=copy 的时候,表示的是强制拷贝表,对应的流程就是图 《改锁表 DDL》 的操作过程。
Online 和 inplace这两个逻辑之间的关系:
思考
假设现在有人碰到了一个“想要收缩表空间,结果适得其反”的情况,看上去是这样的:
可能是什么原因呢 ?
这个表,本身就已经没有空洞的了,比如说刚刚做过一次重建表操作。在 DDL 期间,如果刚好有外部的 DML 在执行,这期间可能会引入一些新的空洞。
在重建表的时候,InnoDB 不会把整张表占满,每个页留了 1/16 给后续的更新用。也就是说,其实重建表之后不是“最”紧凑的。
在不同的 MySQL 引擎中,count(*) 有不同的实现方式。
需要注意的是,在这里讨论的是没有过滤条件的 count(*),如果加了 where 条件的话,MyISAM 表也是不能返回得这么快的。
因为即使是在同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB 表“应该返回多少行”也是不确定的
举例
假设表 t 中现在有 10000 条记录,我们设计了三个用户并行的会话。
假设从上到下是按照时间顺序执行的,同一行语句是在同一时刻执行的。
图 1 会话 A、B、C 的执行流程
在最后一个时刻,三个会话 A、B、C 会同时查询表 t 的总行数,但拿到的结果却不同。
这与InnoDB 的事务设计有关系,可重复读是它默认的隔离级别,在代码上就是通过多版本并发控制,也就是 MVCC 来实现的。每一行记录都要判断自己是否对这个会话可见,因此对于 count(*) 请求来说,InnoDB 只好把数据一行一行地读出依次判断,可见的行才能够用于计算“基于这个查询”的表的总行数。
count(*) 操作的优化
InnoDB 是索引组织表,主键索引树的叶子节点是数据,而普通索引树的叶子节点是主键值。所以,普通索引树比主键索引树小很多。对于 count(*) 这样的操作,遍历哪个索引树得到的结果逻辑上都是一样的。因此,MySQL 优化器会找到最小的那棵树来遍历。在保证逻辑正确的前提下,尽量减少扫描的数据量,是数据库系统设计的通用法则之一。
show table status 命令的输出结果里面也有一个 TABLE_ROWS,索引统计的值是通过采样来估算的。实际上,TABLE_ROWS 就是从这个采样估算得来的,因此它也很不准。官方文档说误差可能达到 40% 到 50%。所以,show table status 命令显示的行数也不能直接使用。
小结一下:
可以用一个 Redis 服务来保存这个表的总行数。这个表每被插入一行 Redis 计数就加 1,每被删除一行 Redis 计数就减 1。这种方式下,读和更新操作都很快,但缓存系统可能会丢失更新。
将计数保存在缓存系统中的方式,还不只是丢失更新的问题。即使 Redis 正常工作,这个值还是逻辑上不精确的。
举例
设想一下有这么一个页面,要显示操作记录的总数,同时还要显示最近操作的 100 条记录。那么,这个页面的逻辑就需要先到 Redis 里面取出计数,再到数据表里面取数据记录。
会出现一下两种情况:
时序图如下:
在并发系统里面,我们是无法精确控制不同线程的执行时刻的,因为存在图中的这种操作序列,所以说即使 Redis 正常工作,这个计数值还是逻辑上不精确的。
会话 B 的读操作仍然是在 T3 执行的,但是因为这时候更新事务还没有提交,所以计数值加 1 这个操作对会话 B 还不可见。因此,会话 B 看到的结果里, 查计数值和“最近 100 条记录”看到的结果,逻辑上就是一致的。
count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是 NULL,累计值就加 1,否则不加。最后返回累计值。
count(*)、count(主键 id) 和 count(1) 都表示返回满足条件的结果集的总行数;而 count(字段),则表示返回满足条件的数据行里面,参数“字段”不为 NULL 的总个数。
对于 count(主键 id) 来说,InnoDB 引擎会遍历整张表,把每一行的 id 值都取出来,返回给 server 层。server 层拿到 id 后,判断是不可能为空的,就按行累加。
对于 count(1) 来说,InnoDB 引擎遍历整张表,但不取值。server 层对于返回的每一行,放一个数字“1”进去,判断是不可能为空的,按行累加。
对比出来,count(1) 执行得要比 count(主键 id) 快。因为从引擎返回 id 会涉及到解析数据行,以及拷贝字段值的操作。
对于 count(字段) 来说:
count(*) 是例外,并不会把全部字段取出来,而是专门做了优化,不取值。count(*) 肯定不是 null,按行累加。
结论: 思考 并发系统性能的角度考虑,应该先插入操作记录,再更新计数表。因为更新计数表涉及到行锁的竞争,先插入再更新能最大程度地减少事务之间的锁等待,提升并发度 来自《MySQL实战45讲》林晓斌
按照效率排序的话,count(字段)
由于事务可以保证中间结果不被别的事务读到,因此修改计数值和插入新记录的顺序是不影响逻辑结果的。
但是,从并发系统性能的角度考虑,在这个事务序列里,应该先插入操作记录,还是应该先更新计数表呢?